DOI QR코드

DOI QR Code

Antioxidative and antiproliferative activities of ethanol extracts from pigmented giant embryo rice (Oryza sativa L. cv. Keunnunjami) before and after germination

  • Chung, Soo Im (Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University) ;
  • Lee, Sang Chul (School of Applied Biosciences, Kyungpook National University) ;
  • Yi, Seong Joon (College of Veterinary Medicine, Kyungpook National University) ;
  • Kang, Mi Young (Department of Food Science and Nutrition, Brain Korea 21 Plus, Kyungpook National University)
  • Received : 2018.03.29
  • Accepted : 2018.07.25
  • Published : 2018.10.01

Abstract

BACKGROUND/OBJECTIVES Oxidative stress is a major cause of cancer. This study investigated the effects of the ethanol extracts from germinated and non-germinated Keunnunjami rice, a blackish-purple pigmented cultivar with giant embryo, on selected human cancer cell lines and on the antioxidant defense system of mice fed with a high-fat diet. MATERIALS/METHODS: High fat-fed mice were orally administered with either distilled water (HF) or extracts (0.25%, w/w) from brown (B), germinated brown (GB), Keunnunjami (K), and germinated Keunnunjami (GK) rice. RESULTS: In comparison with the brown rice extract, Keunnunjami extract showed higher anticancer effect against cervical and gastric cell lines but lower anticancer activity on liver and colon cancer cells. Mice from the HF group showed significantly higher lipid peroxidation and lower antioxidant enzyme activities than the control group. However, the oxidative stress induced by high-fat diet markedly decreased in B, GB, K, and GK groups as compared with the HF group. CONCLUSIONS: Germination may be an effective method for improving the anticancer and antioxidative properties of Keunnunjami rice and extracts from germinated Keunnunjami rice may serve as a therapeutic agent against cervical and gastric cancers and oxidative damage.

Keywords

References

  1. Han SJ, Kwon SW, Chu SH, Ryu SN. A new rice variety ‘Keunnunjami’, with high concentrations of cyanidin 3-glucoside and giant embryo. Korean J Breed Sci 2012;44:185-9.
  2. Chung SI, Rico CW, Lee SC, Kang MY. Hypolipidemic and body fat-lowering effects of giant embryo brown rice (Seonong 17 and Keunnunjami) in high-fat-fed mice. Cereal Chem 2014;91:18-22. https://doi.org/10.1094/CCHEM-04-13-0062-R
  3. Chung SI, Lo LM, Nam SJ, Jin X, Kang MY. Antioxidant capacity of giant embryo rice Seonong 17 and Keunnunjami. J Adv Agric Technol 2016;3:94-8.
  4. Laokuldilok T, Shoemaker CF, Jongkaewwattana S, Tulyathan V. Antioxidants and antioxidant activity of several pigmented rice brans. J Agric Food Chem 2011;59:193-9. https://doi.org/10.1021/jf103649q
  5. Min B, McClung AM, Chen MH. Phytochemicals and antioxidant capacities in rice brans of different color. J Food Sci 2011;76: C117-26. https://doi.org/10.1111/j.1750-3841.2010.01929.x
  6. Goufo P, Trindade H. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, ${\gamma}$-oryzanol, and phytic acid. Food Sci Nutr 2014;2:75-104. https://doi.org/10.1002/fsn3.86
  7. Oh CH, Oh SH. Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J Med Food 2004;7:19-23. https://doi.org/10.1089/109662004322984653
  8. Zhang L, Hu P, Tang S, Zhao H, Wu D. Comparative studies on major nutritional components of rice with a giant embryo and a normal embryo. J Food Biochem 2005;29:653-61. https://doi.org/10.1111/j.1745-4514.2005.00039.x
  9. Wu F, Yang N, Touré A, Jin Z, Xu X. Germinated brown rice and its role in human health. Crit Rev Food Sci Nutr 2013;53:451-63. https://doi.org/10.1080/10408398.2010.542259
  10. Cho DH, Lim ST. Germinated brown rice and its bio-functional compounds. Food Chem 2016;196:259-71. https://doi.org/10.1016/j.foodchem.2015.09.025
  11. Moongngarm A, Saetung N. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chem 2010;122:782-8. https://doi.org/10.1016/j.foodchem.2010.03.053
  12. Patil SB, Khan MK. Germinated brown rice as a value added rice product: a review. J Food Sci Technol 2011;48:661-7. https://doi.org/10.1007/s13197-011-0232-4
  13. Ng LT, Huang SH, Chen YT, Su CH. Changes of tocopherols, tocotrienols, ${\gamma}$-oryzanol, and ${\gamma}$-aminobutyric acid levels in the germinated brown rice of pigmented and nonpigmented cultivars. J Agric Food Chem 2013;61:12604-11. https://doi.org/10.1021/jf403703t
  14. Hübner F, Arendt EK. Germination of cereal grains as a way to improve the nutritional value: a review. Crit Rev Food Sci Nutr 2013;53:853-61. https://doi.org/10.1080/10408398.2011.562060
  15. Nelson K, Stojanovska L, Vasiljevic T, Mathai M. Germinated grains: a superior whole grain functional food? Can J Physiol Pharmacol 2013;91:429-41. https://doi.org/10.1139/cjpp-2012-0351
  16. Wu F, Chen H, Yang N, Wang J, Duan X, Jin Z, Xu X. Effect on germination time on physicochemical properties of brown rice flour and starch from different rice cultivars. J Cereal Sci 2013;58:263-71. https://doi.org/10.1016/j.jcs.2013.06.008
  17. Chung SI, Rico CW, Kang MY. Comparative study on the hypoglycemic and antioxidative effects of fermented paste (doenjang) prepared from soybean and brown rice mixed with rice bran or red ginseng marc in mice fed with high fat diet. Nutrients 2014;6:4610-24. https://doi.org/10.3390/nu6104610
  18. Lo LM, Kang MY, Yi SJ, Chung SI. Dietary supplementation of germinated pigmented rice (Oryza sativa L.) lowers dyslipidemia risk in ovariectomized Sprague-Dawley rats. Food Nutr Res 2016;60: 30092. https://doi.org/10.3402/fnr.v60.30092
  19. Chakuton K, Puangpronpitag D, Nakornriab M. Phytochemical content and antioxidant activity of colored and non-colored Thai rice cultivars. Asian J Plant Sci 2012;11:285-93. https://doi.org/10.3923/ajps.2012.285.293
  20. Jeng TL, Shih YJ, Ho PT, Lai CC, Lin YW, Wang CS, Sung JM. ${\gamma}$-Oryzanol, tocol and mineral compositions in different grain fractions of giant embryo rice mutants. J Sci Food Agric 2012;92: 1468-74. https://doi.org/10.1002/jsfa.4728
  21. Konwachara T, Ahromrit A. Effect of cooking on functional properties of germinated black glutinous rice (KKU-URL012). Songklanakarin J Sci Technol 2014;36:283-90.
  22. Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 1998;46:4113-7. https://doi.org/10.1021/jf9801973
  23. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993;123:1939-51. https://doi.org/10.1093/jn/123.11.1939
  24. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8. https://doi.org/10.1016/0003-2697(79)90738-3
  25. Islam MA, Becerra JX. Analysis of chemical components involved in germination process of rice variety Jhapra. J Sci Res 2012;4: 251-62.
  26. Norhaizan ME, Ng SK, Norashareena MS, Abdah MA. Antioxidant and cytotoxicity effect of rice bran phytic acid as an anticancer agent on ovarian, breast and liver cancer cell lines. Malays J Nutr 2011;17:367-75.
  27. Watanabe M, Maemura K, Oki K, Shiraishi N, Shibayama Y, Katsu K. Gamma-aminobutyric acid (GABA) and cell proliferation: focus on cancer cells. Histol Histopathol 2006;21:1135-41.
  28. Yang CS, Suh N. Cancer prevention by different forms of tocopherols. Top Curr Chem 2013;329:21-33.
  29. Zhou Y, Zheng J, Li Y, Xu DP, Li S, Chen YM, Li HB. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016;8:E515. https://doi.org/10.3390/nu8080515
  30. Chen PN, Chu SC, Chiou HL, Chiang CL, Yang SF, Hsieh YS. Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr Cancer 2005;53:232-43. https://doi.org/10.1207/s15327914nc5302_12
  31. Cho E, Chung EY, Jang HY, Hong OY, Chae HS, Jeong YJ, Kim SY, Kim BS, Yoo DJ, Kim JS, Park KH. Anti-cancer effect of cyanidin-3-glucoside from mulberry via caspase-3 cleavage and DNA fragmentation in vitro and in vivo. Anticancer Agents Med Chem 2017;17:1519-25.
  32. Hui C, Bin Y, Xiaoping Y, Long Y, Chunye C, Mantian M, Wenhua L. Anticancer activities of an anthocyanin-rich extract from black rice against breast cancer cells in vitro and in vivo. Nutr Cancer 2010;62:1128-36. https://doi.org/10.1080/01635581.2010.494821
  33. Pintha K, Yodkeeree S, Pitchakarn P, Limtrakul P. Anti-invasive activity against cancer cells of phytochemicals in red jasmine rice (Oryza sativa L.). Asian Pac J Cancer Prev 2014;15:4601-7. https://doi.org/10.7314/APJCP.2014.15.11.4601
  34. Kim HY, Lee SH, Hwang IG, Kim TM, Park DS, Kim JH, Kim DJ, Lee J, Jeong HS. Antioxidant activity and anticancer effects of rough rice (Oryza sativa L.) by germination periods. J Korean Soc Food Sci Nutr 2012;41:14-9. https://doi.org/10.3746/jkfn.2012.41.1.014
  35. Ibrahim W, Lee US, Yeh CC, Szabo J, Bruckner G, Chow CK. Oxidative stress and antioxidant status in mouse liver: effects of dietary lipid, vitamin E and iron. J Nutr 1997;127:1401-6. https://doi.org/10.1093/jn/127.7.1401
  36. Reiter RJ, Tan DX, Burkhardt S. Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech Ageing Dev 2002;123:1007-19. https://doi.org/10.1016/S0047-6374(01)00384-0
  37. Ng CJ, Shih DM, Hama SY, Villa N, Navab M, Reddy ST. The paraoxonase gene family and atherosclerosis. Free Radic Biol Med 2005;38:153-63. https://doi.org/10.1016/j.freeradbiomed.2004.09.035
  38. Lee YR, Kim CE, Kang MY, Nam SH. Cholesterol-lowering and antioxidant status-improving efficacy of germinated giant embryonic rice (Oryza sativa L.) in high cholesterol-fed rats. Ann Nutr Metab 2007;51:519-26. https://doi.org/10.1159/000112733
  39. Maksup S, Pongpakpian S, Roytrakul S, Cha-Um S, Supaibulwatana K. Comparative proteomics and protein profile related to phenolic compounds and antioxidant activity in germinated Oryza sativa ‘KDML105’ and Thai brown rice ‘Mali Daeng’ for better nutritional value. J Sci Food Agric 2018;98:566-73. https://doi.org/10.1002/jsfa.8498
  40. Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr 2005;81:215S-217S. https://doi.org/10.1093/ajcn/81.1.215S
  41. Serafini M, Morabito G. The role of polyphenols in the modulation of plasma Non-Enzymatic Antioxidant Capacity (NEAC). Int J Vitam Nutr Res 2012;82:228-32. https://doi.org/10.1024/0300-9831/a000116

Cited by

  1. Lactobacillus acidophilus-Fermented Germinated Brown Rice Suppresses Preneoplastic Lesions of the Colon in Rats vol.11, pp.11, 2019, https://doi.org/10.3390/nu11112718
  2. Changes in Functionality of Germinated and Non-Germinated Brown Rice Fermented by Bacillus natto vol.10, pp.11, 2018, https://doi.org/10.3390/foods10112779