• 제목/요약/키워드: Oxidative enzyme activities

검색결과 351건 처리시간 0.024초

통초, 필발을 포함한 7종 한약재 추출물의 항산화 및 항염증 활성 (Anti-Oxidative and Anti-Inflammatory Activities of Seven Medicinal Herbs including Tetrapanax papyriferus and Piper longum Linne)

  • 진경숙;오유나;이지영;손병일;최우봉;이은우;권현주;김병우
    • 한국미생물·생명공학회지
    • /
    • 제41권2호
    • /
    • pp.253-262
    • /
    • 2013
  • In this study, we analyzed the anti-oxidative and anti-inflammatory activities of seven medicinal herbs. All extracts of the tested herbs, Euryale ferox Salisbury, Echinops setifer Iljin, Amomum cardamomum Linne, Tetrapanax papyriferus, Illicium verum Hook. f., Typha orientalis Presl, and Piper longum Linne, exhibited potent anti-oxidative activity as confirmed by DPPH radical scavenging capacity. Lipopolysaccharide (LPS) induced nitric oxide (NO) production, in the RAW 264.7 cell line, was also ameliorated by all extracts' treatments in a dose dependent manner. NO suppressive activity originated from the inhibition of inducible nitric oxide synthase (iNOS) protein expression by the extracts. Three extracts, E. ferox S., I. verum Hook. f., and P. longum L., possessed suppressive activity against, not only iNOS, but also cycloxygenase 2 (COX-2) protein expression. These three extracts may then serve as potential candidates for non steroidal analgesic inflammation drugs (NSAIDs). Furthermore, all extracts induced anti-oxidative enzyme, heme oxygenase 1, protein expression. Taken together, these results provide an important new insight into the fact that various medicinal herbs possess potent anti-oxidative and anti-inflammatory activities and might be utilized as promising agents in the field of health products. Further studies for the identification of the active compounds from medicinal herbs are clearly needed.

Temporal changes in mitochondrial activities of rat heart after a single injection of iron, including increased complex II activity

  • Kim, Mi-Sun;Song, Eun-Sook
    • Animal cells and systems
    • /
    • 제14권2호
    • /
    • pp.91-98
    • /
    • 2010
  • Male rats were given a single injection of iron, and temporal changes in iron content and iron-induced effects were examined in heart cellular fractions. Over a period of 72 h, the contents of total and labile iron, reactive oxygen species, and NO in tissue homogenate, nuclear debris, and postmitochondrial fractions were mostly constant, but in mitochondria they continuously increased. An abrupt decrease in membrane potential and NAD(P)H at 12 h was also found in mitochondria. The respiratory control ratio was reduced slowly with a slight recovery at 72 h, suggesting uncoupling by iron.While the ATP content of tissue homogenate decreased steadily until 72 h, it showed a prominent increase in mitochondria at 12 h. Total iron and calcium concentration also progressively increased in mitochondria over 72 h. Enzyme activity of the oxidative phosphorylation system was significantly altered by iron injection: activities of complexes I, III, and IV were reduced considerably, but complex II activity and the ATPase activity of complex V were enhanced. A reversal of activity in complexes I and II at 12 h suggested reverse electron transfer due to iron overload. These results support the argument that mitochondrial activities including oxidative phosphorylation are modulated by excessive iron.

Anaerobic Respiration of Superoxide Dismutase-Deficient Saccharomyces cerevisiae under Oxidative Stress

  • Lee, Sun-Mi;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제3권1호
    • /
    • pp.15-18
    • /
    • 1998
  • The entanol productivity of superoxide dismutase (SOD)-deficient mutants of Saccharo-Myces cerevisiae was examined under the oxidative stress by Paraquat. It was observed that MnSOD-deficient mutant of S. cerevisiae had higher ethanol productivity than wild type or CuZnSOD-deficient yeast both in aerobic and in anaerobic culture condition. Pyruvated dehydrogenase activity decreased by 35% and alcohol dehydrogenase activity increased by 32% were observed in MnSOD-deficient yeast grown aerobically. When generating oxygen radicals by Paraquat, the ehanol productivity was increased by 40% in CuZnSOD-deficient or wild strain, resulting from increased activity of alcohol dehydrogenase and decreased a activity of pyruvate dehydrogenase. However, the addition of ascorbic acid with Paraquat returned the enzyme activities at the level of control. These results imply that SOD-deficiency in yeast strains may cause the metabolic flux to shift into anaerobic ethanol fermentation in order to avoid their oxidative damages by Paraquat.

  • PDF

Effect of vitamin $B_6$ deficiency on antioxidative status in rats with exercise-induced oxidative stress

  • Choi, Eun-Young;Cho, Youn-Ok
    • Nutrition Research and Practice
    • /
    • 제3권3호
    • /
    • pp.208-211
    • /
    • 2009
  • This study investigated the effect of vitamin $B_6$ deficiency on antioxidant enzyme activities and lipid profile in rats with exercise-induced oxidative stress. Forty eight rats were fed either a vitamin $B_6$ deficient diet (B6-) or a control diet (control) for 4 weeks and then subdivided into 3 groups: pre-exercise (PreE); post-exercise (PostE); recess after exercise (recessE). Compared to those of control group, plasma catalase and hepatic cytosol superoxide dismutase (SOD, EC 1.15.1.1) activities of B6- group were lower regardless of exercise. The ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) of B6 - group was lower in PreE and there was no difference between PostE and recessE. The level of malondialdehyde (MDA) of B6- was significantly higher in PreE and PostE. High-density lipoprotein-cholesterol (HDL-C) level of B6- group was lower regardless of exercise. Atherosclerotic index of $B_6$- group was higher in PreE and there was no difference between PostE and recessE. It is suggested that a reduction in antioxidative status caused by vitamin $B_6$ deficiency may be aggravated under exercise-induced oxidative stress.

$\beta$-Carotene 첨가식이가 당뇨쥐의 지질과산화물 수준과 항산화효소 활성에 미치는 영향 (Effects of $\beta$-Carotene Supplementation on Lipid Peroxide Levels and Antioxidative Enzyme Activities in Diabetic Rats)

  • 이완희;천종희
    • Journal of Nutrition and Health
    • /
    • 제36권7호
    • /
    • pp.675-683
    • /
    • 2003
  • This study investigated the effect of dietary $\beta$-carotene supplementation on lipid peroxidation and anti oxidative enzyme activity as indices of oxidative stress in diabetic rats. Fifty Sprague-Dawley male rats aging 7 weeks were used as experimental animals, which were divided into the non-diabetic control group and the diabetic group. The diabetic group received an intraperitoneal injection with streptozotocin to induce diabetes. Then the diabetic rats were divided into four dietary groups which contained different amounts of $\beta$-carotene; 0%, 0.002%, 0.02%, or 0.2% of the diet. The diabetic rats were fed the experimental diets and the non-diabetic rats were fed the basal diet without $\beta$-carotene supplementation for 2 weeks and then sacrificed. The diabetic group had a significantly higher blood glucose level than the non-diabetic group. However, blood glucose level were not significantly changed by the level of dietary $\beta$-carotene supplementation. Compared to the non-diabetic control group, the diabetic control group indicated a significant increase of plasma thiobarbituric acid reactive substance (TBARS). Liver TBARS level also tended to be higher in diabetic control group, although it was not significant. The $\beta$-carotene supplementation did not reduce plasma TBARS level. However, Liver TBARS level was significantly decreased when 0.02% or more $\beta$-carotene was supplemented in the diet. The liver lipofuscin level in the diabetic control group was higher than in the non-diabetic control group, but the effect of $\beta$-carotene supplementation did not show any differences. Superoxide dismutase activity was significantly lower in the diabetic group, but it was increased in groups receiving 0.02% or more $\beta$-carotene. Compared to the non-diabetic control group, lower activities of catalase and glutathione peroxidase were observed in the diabetic control group, although it was not significant. Catalase and glutathione peroxidase activities tended to increase as the levels of $\beta$-carotene supplementation increased, although it was not statistically significant. Therefore, it seems that dietary $\beta$-carotene supplementation might reduce diabetic complications by partly decreasing the lipid peroxidation and increasing the activity of antioxidative enzyme in diabetes.

Paraquat 유도 산화스트레스하의 배추 잎에서 Ascorbate-Glutathione 회로 효소의 활성도에 대한 산화질소 (Nitric oxide)의 효과 (Effects of nitric oxide on ascorbate-glutathione cycle enzymes activities in chinese cabbage leaves under paraquat-induced oxidative stress)

  • 나호견;진창덕
    • Journal of Plant Biotechnology
    • /
    • 제41권2호
    • /
    • pp.73-80
    • /
    • 2014
  • 산화질소(nitric oxide: NO) 공여체인 $100{\mu}M$ sodium nitroprusside (SNP)를 배추 잎에 전처리한 후 이어서 $2{\mu}M$ paraquat (PQ)처리 시, PQ에 의해 유도된 산화적 손상에 대한 잎의 내성이 효과적으로 증진되었다. 24 시간 광 배양기간 동안 PQ 단독 처리구 잎에서는 생체량, 엽록소 및 단백질 함량이 현저하게 감소하였으나 PQ 노출 전에 3시간 SNP 전처리로 이들 잎 손상이 의미 있게 완화되었다. 게다가 PQ 처리에 기인된 malondialdehyde (MDA)와 $H_2O_2$ 함량 증가도 SNP 전처리에 의해 유의하게 억제되었다. 잎에서 이들 PQ 독성에 대한 SNP의 방어효과와 관련하여 ascorbate-glutathione 회로 구성 효소의 활성도 변화를 조사하였다. PQ 단독 처리구에서 APX, DHAR 및 GR 효소 활성도는 배양 6시간후에 급격히 감소되어 대조구 잎과 비교 시 각각 대조구의 19%, 50%, 39% 수준의 활성도 값을 보였다. 그러나, 이들 효소 활성도 값 감소는 SNP 전처리에 의해 현저하게 억제되어 6시간 배양 후에 PQ 단독처리구 보다 각각 5배, 2배, 1.5배 높은 값을 나타내었다. 또한, 그 이후 24시간 배양 때까지 PQ 단독 처리구보다 계속 높은 활성도를 보이면서 점차로 감소하였다. 이들 결과로부터, PQ에 노출된 배추 잎에서 SNP 전처리에 의한 ascorbate-glutathione 회로의 활성화가 $H_2O_2$의 축적을 억제하며 그로인해 PQ에 의해 유도된 산화스트레스로부터 잎을 방어하는 것으로 생각되었다. 동시에 이 들 결과는 산화질소가 배추 잎에서 PQ 스트레스에 대한 항산화 방어자로서의 역할을 하는 것을 의미한다.

홍국(Monascus purpureus)쌀을 첨가한 고콜레스테롤 식이가 흰쥐의 항산화 활성에 미치는 영향 (Effect of Red Yeast (Monascus purpureus) Rice Supplemented Diet on Lipid Profiles and Antioxidant Activity in Hypercholesterolemic Rats)

  • 권정숙
    • 한국식품영양과학회지
    • /
    • 제43권1호
    • /
    • pp.16-23
    • /
    • 2014
  • 고콜레스테롤 식이에 홍국쌀 분말을 0.2%, 1% 및 5% 첨가한 식이를 4주간 섭취한 동물에서 홍국쌀의 지질 개선 효과와 함께 항산화 효과를 혈액과 간의 항산화 효소 활성, 항산화 효소의 유전자 발현 및 DNA 손상에 미치는 영향으로 분석하였다. 홍국쌀 분말 첨가 식이를 섭취한 후의 체중 변화, 식이섭취량, 식이 효율 및 간 무게는 대조군과 유의한 차이가 없었다. 혈장에서 총 콜레스테롤은 대조군에 비해 0.2% 첨가군에서 24% 감소하였으며, HDL 콜레스테롤은 5% 첨가군에서 20% 증가하였고 LDL 콜레스테롤은 0.2% 첨가군에서 42% 감소한 것으로 나타났다. 항산화 효소 활성에서는 SOD 활성이 감소하거나 유의성이 없었으나 적혈구에서 GPx와 CAT의 활성이 대조군에 비해 유의성 있게 증가하는 것으로 나타났으며, 간의 TBARS는 5% 첨가군에서 대조군에 비해 19% 유의적으로 감소한 것으로 나타났다. 항산화 효소의 유전자 발현에서는 5% 첨가군에서 CAT의 발현이 대조군에 비해 7.9배 유의성 있게 증가하였다. 홍국쌀 분말 섭취로 인한 DNA 손상은 관찰되지 않았으며, $H_2O_2$로 산화 스트레스를 가했을 때 DNA 손상이 농도 의존적으로 억제되는 것으로 나타났다. 이상의 결과로부터 홍국쌀의 섭취가 혈액과 간의 지질 대사 개선 효능을 가지며, 항산화효소의 활성화를 통해 ROS에 의한 세포 손상을 억제할 뿐 아니라 LDL 콜레스테롤의 산화도 억제할 것으로 예상되므로 심혈관계 질환에 대한 예방 효과가 있을 것으로 사료된다.

Protopanaxatriol Ginsenoside Rh1 Upregulates Phase II Antioxidant Enzyme Gene Expression in Rat Primary Astrocytes: Involvement of MAP Kinases and Nrf2/ARE Signaling

  • Jung, Ji-Sun;Lee, Sang-Yoon;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제24권1호
    • /
    • pp.33-39
    • /
    • 2016
  • Oxidative stress activates several intracellular signaling cascades that may have deleterious effects on neuronal cell survival. Thus, controlling oxidative stress has been suggested as an important strategy for prevention and/or treatment of neurodegenerative diseases. In this study, we found that ginsenoside Rh1 inhibited hydrogen peroxide-induced reactive oxygen species generation and subsequent cell death in rat primary astrocytes. Rh1 increased the expression of phase II antioxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1, superoxide dismutase-2, and catalase, that are under the control of Nrf2/ARE signaling pathways. Further mechanistic studies showed that Rh1 increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to the antioxidant response element (ARE), and increased the ARE-mediated transcription activities in rat primary astrocytes. Analysis of signaling pathways revealed that MAP kinases are important in HO-1 expression, and act by modulating ARE-mediated transcriptional activity. Therefore, the upregulation of antioxidant enzymes by Rh1 may provide preventive therapeutic potential for various neurodegenerative diseases that are associated with oxidative stress.

월국환(越鞠丸) 메탄올 추출물이 산화적 간손상에 미치는 효과 (Effects of Wolgukwhan Methanol Extract on Oxidative Liver Injury)

  • 문진영
    • 대한한의학방제학회지
    • /
    • 제10권2호
    • /
    • pp.85-95
    • /
    • 2002
  • Objectives: In traditional medicine, Wolgukwhan has been used for the treatment of digestive system disease, such as indigestion, brash, ructation, nausea and vomiting. This study was purposed to investigate the effects of Wolgukwhan methnol extract (WGWM) on oxidative liver cell injury. Methods: In vivo assay, we administerated acetaminophen(500mg/kg, i.p.) to starved mice 24hrs after pretreatment of WGWM for 6days. In the liver homogenates, lipid peroxide and glutathione(GSH) levels were measured. In addition, activities of hepatic enzyme, such as catalase, glutathione peroxidase(GPX), glutathione S-transferase(GST) were measured in the hepatic mitochondrial and cytosolic fractions. Results: In vivo administeration of WGWM showed effective inhibition of acetaminophen induced lipid peroxidation and elevations of glutathione level. The acetaminophen treatment resulted in a decrease of catalase, GPX and GST activities. By contrast, WGWM pretreatment increased compare to those of untreated groups. Conclusions: These results suggested that WGWM might protect against lipid peroxidation by free radicals, destruction of hepatic cell membranes.

  • PDF

Cotoneaster horizontalis Decne 추출물의 항산화 및 항염증 활성 (Anti-Oxidative and Anti-Inflammatory Activities of Cotoneaster horizontalis Decne Extract)

  • 이지영;진경숙;권현주;김병우
    • 한국미생물·생명공학회지
    • /
    • 제43권3호
    • /
    • pp.280-285
    • /
    • 2015
  • Cotoneaster horizontalis Decne 에탄올 추출물(CHEE)의 항산화능과 항염증 생리활성을 분석하였다. CHEE의 항산화능을 DPPH radical scavenging activity로 분석한 결과 radical 소거능의 정도가 양성 대조군으로 사용한 ascorbic acid와 유사한 정도의 높은 활성을 보여 매우 강한 항산화능을 보유함을 확인하였다. 또한 RAW 264.7 세포주를 이용하여 H2O2 유도에 의해 생성된 ROS에 대한 소거능을 분석한 결과에서도 강한 소거능을 보였다. 뿐만 아니라 항산화효소 HO-1 및 그 전사 인자인 Nrf2의 단백질 발현이 CHEE의 처리에 의해 증가되었다. 한편 CHEE가 LPS에 의해 유도된 NO 생성에 미치는 영향을 분석한 결과 농도의존적인 NO 생성 저해능을 보였으며 이는 NO 생성 단백질인 iNOS의 발현 저해에서 기인함을 확인하였다. 이러한 결과를 통해 C. horizontalis의 항산화능과 항염증 활성을 세포 수준에서 처음으로 확인하였으며 향후 기능성 소재로서 유용하게 활용될 수 있을 것으로 판단된다.