• Title/Summary/Keyword: Oxidation temperature

Search Result 2,418, Processing Time 0.024 seconds

Detection of H2S Gas with CuO Nanowire Sensor (산화구리 나노선 센서의 황화수소 감지특성)

  • Lee, Dongsuk;Kim, Dojin;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.238-246
    • /
    • 2015
  • $H_2S$ is a flammable toxic gas that can be produced in plants, mines, and industries and is especially fatal to human body. In this study, CuO nanowire structure with high porosity was fabricated by deposition of copper on highly porous singlewall carbon nanotube (SWCNT) template followed by oxidation. The SWCNT template was formed on alumina substrates by the arc-discharge method. The oxidation temperatures for Cu nanowires were varied from 400 to $800^{\circ}C$. The morphology and sensing properties of the CuO nanowire sensor were characterized by FESEM, Raman spectroscopy, XPS, XRD, and currentvoltage examination. The $H_2S$ gas sensing properties were carried out at different operating temperatures using dry air as the carrier gas. The CuO nanowire structure oxidized at $800^{\circ}C$ showed the highest response at the lowest operating temperature of $150^{\circ}C$. The optimum operating temperature was shifted to higher temperature to $300^{\circ}C$ as the oxidation temperature was lowered. The results were discussed based on the mechanisms of the reaction with ionosorbed oxygen and the CuS formation reaction on the surface.

The Influence of Support on Gas Mask Cobalt Catalysts for Low Temperature CO Oxidation (방독마스크용 코발트 촉매의 저온 일산화탄소 산화반응에서 지지체의 영향)

  • Kim, Deog-Ki;Kim, Bok-Ie;Shin, Chae-Ho;Shin, Chang-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.35-45
    • /
    • 2006
  • Cobalt catalysts for gas mask loaded on various supports such as $Al_{2}O_{3},\;TiO_{2}$, AC(activated carbon) and $SiO_{2}$ were used to examine influences of calcination temperatures and reaction temperatures for CO oxidation. $Co(NO_{3})_2{\cdot}6H_{2}O$ was used as cobalt precursor and the catalysts were prepared by incipient wetness impregnation. The catalysts were characterized using XRD, TGA/DTA, TEM, $N_{2}$ sorption, and XPS. For the catalytic activity, support was in the order of ${\gamma}-Al_{2}O_{3}>TiO_{2}>SiO_{2}>AC\;and\;Al_{2}O_{3}$. The catalytic activity at lower temperature than $80^{\circ}C$ showed that with the increase of reaction temperature, cobalt catalysts on ${\gamma}-Al_{2}O_{3},\;TiO_{2},\;AC\$ has the negative activation energy but that of $SiO_{2}$ was positive.

A Study on the high temperature oxidation behavior of zirconia plasma coatings on Haselloy X (Zirconala 용사된 Hastelloy X의 고온산화거동)

  • 김재철;신억균;박영규;최시경;김길무
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.285-297
    • /
    • 1997
  • Finned segment, with which are lined inner wall of the turbine combustors, are subject to severe degradation when they are exposed to a hostile environmment at elevated temperature. To protect the finned segment from this environment and to maintain good mechanical properties of components at high temperature, they are preferred to be coated. The most governing factor for the durability of coatings used in the high temperature is the microstructure of coatings; these are splat from, distibution of microcacks, size and distribution of pores, thickness of coating layer, adhesion between coating layer, and oxidation of band coating. In this study, based on the evaluation of the imported finned segment, new finned segment segment was manufactured with optimum plasma spraying parameters, and their properties were examined. Using $ZrO_2(8wt$Y_2O_3)$,/TEX> powder for ceramic coating and 67Ni-22Cr-10Al-0.5Y mixing powder for bond coating, thickness of ceramic and bond coating layer were varied in order to find optimum condition, the results showed that B2T4(bond coating : 100~250$\mu\textrm{m}$, ceramic coating : 250~300$\mu\textrm{m}$) was the best among the specimens tested. Compared to the imported finned segment, B2T4 has better bond strength, hardness, and isothermal and cyclic oxidation resistance.

  • PDF

Thermal Stability and Weight Reduction of Al0.75V2.82CrZr Refractory High Entropy Alloy Prepared Via Mechanical Alloying (기계적 합금화를 이용한 Al0.75V2.82CrZr 내화 고엔트로피 합금의 경량화 및 고온 열안정성 연구)

  • Minsu Kim;Hansung Lee;Byungmin Ahn
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.478-483
    • /
    • 2023
  • High-entropy alloys (HEAs) are characterized by having five or more main elements and forming simple solids without forming intermetallic compounds, owing to the high entropy effect. HEAs with these characteristics are being researched as structural materials for extreme environments. Conventional refractory alloys have excellent high-temperature strength and stability; however, problems occur when they are used extensively in a high-temperature environment, leading to reduced fatigue properties due to oxidation or a limited service life. In contrast, refractory entropy alloys, which provide refractory properties to entropy alloys, can address these issues and improve the high-temperature stability of the alloy through phase control when designed based on existing refractory alloy elements. Refractory high-entropy alloys require sufficient milling time while in the process of mechanical alloying because of the brittleness of the added elements. Consequently, the high-energy milling process must be optimized because of the possibility of contamination of the alloyed powder during prolonged milling. In this study, we investigated the high-temperature oxidation behavior of refractory high-entropy alloys while optimizing the milling time.

Role of FT-IR in Assessing Lubricant Degradation - A Study on Palm Oil Methyl Ester Blended Lubricant

  • Maleque, M.A.;Masjuki, H.H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.351-352
    • /
    • 2002
  • In this paper, studies were made on the palm oil methyl ester (POME) added lubricants using FT-IR for monitoring oil degradation. In order to assess the degradation characteristics of POME added lubricant by FT-IR, static oxidation test was conducted using three different blended lubricants (viz, zero percent POME, five percent POME and ten percent POME with mineral-based oil) for 280 hrs. The oxidation temperature was set at $140^{\circ}C$. FT-IR quantitative data indicate an increased in oxidation products which was formed from 10% POME added lubricants after 280 hrs of oxidation test. The 5% POME added lubricant and mineral-based lubricant (without POME) showed less oxidation product after the test. From the FT-IR spectrum analysis of the oxidized oils it could be concluded that 5% POME can improve the performance of mineral-based oil by forming protective films.

  • PDF

Characteristics of the aluminum thisn films for the prevention of copper oxidation (구리 금속선의 산화 방지를 위한 알루미늄 박막의 산화 방지 특성)

  • 이경일;민경익;주승기;라관구;김우식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.108-113
    • /
    • 1994
  • The characteristics of the oxidation prevention layers for the copper metallization were investigated. The thin films such as Cr, TiN and Al were used as the oxidation prevention layers for copper. Ultra thin aluminum films were found to prevent the oxidation of copper up to the highest oxidation annealing temperature among the barrier layers examined in this study. It was found that oxygen did not diffuse into copper through aluminum films because of the aluminum oxide layer formed on the aluminum surface and the ultra thin aluminum film could be a good oxidation barrier layer for the copper metallization.

  • PDF

Oxidation Kinetics of Pitch Based Carbon Fibers

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.121-126
    • /
    • 2008
  • High modulus pitch based carbon fibers (HM) were exposed to isothermal oxidation using tube furnace in carbon dioxide gas to study the oxidation kinetics under the temperature of $800-1100^{\circ}C$. The kinetic equation $f=1-{\exp}(-at^b)$ was introduced and the constant b was obtained in the range of 1.02~1.42. The oxidation kinetics were evaluated by the reaction-controlling regime (RCR) depending upon the apparent activation energies with the conversion increasing from 0.2 to 0.8. The activation energies decrease from 24.7 to 21.0 kcal/mole with the conversion increasing from 0.2 to 0.8, respectively. According to the RCR, the reaction was limited by more diffusion controlling regime for the HM fibers with the conversion increasing. Therefore, it seems that the oxidation which is under the diffusion controlling regime takes place continuously from the skin to the core of the fiber.

Metalloporphyrin-Catalyzed Chemoselective Oxidation of Sulfides with Polyvinylpyrrolidone-Supported Hydrogen Peroxide: Simple Catalytic System for Selective Oxidation of Sulfides to Sulfoxides

  • Zakavi, Saeed;Abasi, Azam;Pourali, Ali Reza;Talebzadeh, Sadegh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.35-38
    • /
    • 2012
  • Room temperature oxidation of organic sulfides with polyvinylpyrrolidone-supported hydrogen peroxide (PVP-$H_2O_2$) in the presence of Mn(III) complexes of meso-tetraphenylporphyrin, Mn(TPP)X (X = OCN, SCN, OAc, Cl) and imidazole (ImH) leads to the highly chemoselective (ca. 90%) oxidation of sulfides to the corresponding sulfoxide. The efficiency of reaction has been shown to be influenced by different reaction parameters such as the nature of counterion (X) and solvent as well as the molar ratio of reactants. Using Mn(TPP)OCN and ImH in 1:15 molar ratio and acetone as the solvent leads to the efficient oxidation of different sulfides.

Effects of Nb Addition on Microstructure and Oxidation Behavior of Ti Alloy (Nb이 첨가된 Ti합금의 미세 조직 및 산화 거동)

  • 이도재;이광민;이경구;박범수;김수학;전충극;윤계림
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.58-63
    • /
    • 2004
  • The oxidation behavior of Ti-Nb alloys was studied in dry atmosphere. After vacuum arc melting and hot rolling treatment, Ti-Nb alloys were oxidized at $450^{\circ}C$$750^{\circ}C$. The oxidation behaviors between matrix and oxide scale were analyzed by SEM, XPS and XRD. Ti-Nb alloys had higher oxidation resistance than pure Ti at $750^{\circ}C$. XPS analysis of oxide film revealed that $TiO_2$ oxide was formed on the top of surface. The weight gains during the oxidation increase rapidly at temperature above $600^{\circ}C$ which obey the parabolic law.

The Oxidation of TiB$_2$ Ceramics (TiB$_2$ 세라믹스의 산화)

  • 이동복;이영찬
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.1
    • /
    • pp.25-32
    • /
    • 2001
  • $TiB_2$ ceramics were oxidized at 800, 900 and $1000^{\circ}C$ in air for 40 hr, and their oxidation property was investigated using TGA, XRD, SEM and EPMA. The oxidation resistance decreased with an increase in oxidation temperature. The scale was essentially composed of $TiO_2$ only. $B_2$$O_3$ formed during oxidation escaped from the $TiO_2$ oxide scale owing to its high vapor pressure. This made the oxide scale highly porous and thick. The oxidation reaction was mainly governed by the inward transport of oxygen.$ TiO_2$ existing at the outermost scale grew into peculiarly shaped blades, as the reaction progressed.

  • PDF