• Title/Summary/Keyword: Oxidation stress

Search Result 391, Processing Time 0.021 seconds

An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis

  • Nicol, Christopher J.;Zielenski, Julian;Tsui, Lap-Chee;Wells, Peter G.
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2002.05a
    • /
    • pp.48-64
    • /
    • 2002
  • The primary recognized health risk from common deficiencies in glucose-6-phosphate dehydrogenase (G6PD), a cytoprotective enzyme for oxidative stress, is red blood cell hemolysis. Here we show that litters from untreated pregnant mutant mice with a hereditary G6PD deficiency had increased prenatal (fetal resorptions) and postnatal death. When treated with the anticonvulsant drug phenytoin, a human teratogen that is commonly used in pregnant women and causes embryonic oxidative stress, G6PD-deficient dams had higher embryonic DNA oxidation and more fetal death and birth defects. The reported G6PD gene mutation was confirmed and used to genotype fetal resorptions, which were primarily G6PD deficient. This is the first evidence that G6PD is a developmentally critical cytoprotective enzyme for both endogenous and xenobiotic-initiated embryopathic oxidative stress and DNA damage. G6PD deficiencies accordingly may have a broader biological relevance as important determinants of infertility, in utero and postnatal death, and teratogenesis.-Nicol, C. J., Zielenski, J., Tsui, L.-C., Wells, P. G. An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis.

  • PDF

Axial strength of Zircaloy-4 samples with reduced thickness after a simulated loss of coolant accident

  • Desquines, Jean;Taurines, Tatiana
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2295-2303
    • /
    • 2021
  • To investigate wall-thinning impact on axial load resistance of Zircaloy-4 cladding rods after a LOCA transient, axial tensile samples have been machined on as-received tubes with reduced thicknesses between 370 and 580 ㎛. After high temperature oxidation under steam at 1200 ℃ with measured ECR ranging from 10 to 18% and water quenching, machined samples were axially loaded until fracture. These tests were modeled using a fracture mechanics approach developed in a previous study. Fracture stresses are rather well predicted. However, the slightly lower fracture stress observed for wall-thinned samples is not anticipated by this modeling approach. The results from this study confirm that characterizing the axial load resistance using semi-integral tests including the creep and burst phases was the best option to obtain accurate axial strengths describing accurately the influence of wall-thinning at burst region.

Proteomic Analysis of Erythritol-Producing Yarrowia lipolytica from Glycerol in Response to Osmotic Pressure

  • Yang, Li-Bo;Dai, Xiao-Meng;Zheng, Zhi-Yong;Zhu, Li;Zhan, Xiao-Bei;Lin, Chi-Chung
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1056-1069
    • /
    • 2015
  • Osmotic pressure is a critical factor for erythritol production with osmophilic yeast. Protein expression patterns of an erythritol-producing yeast, Yarrowia lipolytica, were analyzed to identify differentially-expressed proteins in response to osmotic pressure. In order to analyze intracellular protein levels quantitatively, two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Y. lipolytica cultured under low (3.17 osmol/kg) and high (4.21 osmol/kg) osmotic pressures. Proteomic analyses allowed identification of 54 differentially-expressed proteins among the proteins distributed in the range of pI 3-10 and 14.4-97.4 kDa molecular mass between the osmotic stress conditions. Remarkably, the main proteins were involved in the pathway of energy, metabolism, cell rescue, and stress response. The expression of such enzymes related to protein and nucleotide biosynthesis was inhibited drastically, reflecting the growth arrest of Y. lipolytica under hyperosmotic stress. The improvement of erythritol production under high osmotic stress was due to the significant induction of a range of crucial enzymes related to polyols biosynthesis, such as transketolase and triosephosphate isomerase, and the osmotic stress responsive proteins like pyridoxine-4-dehydrogenase and the AKRs family. The polyols biosynthesis was really related to an osmotic response and a protection mechanism against hyperosmotic stress in Y. lipolytica. Additionally, the high osmotic stress could also induce other cell stress responses as with heat shock and oxidation stress responses, and these responsive proteins, such as the HSPs family, catalase T, and superoxide dismutase, also had drastically increased expression levels under hyperosmotic pressure.

A Study on Residual Stress Reduction Effect of Cold Spray Coating to Improve Stress Corrosion Cracking of Stainless Steel 304L and 316L Welds (STS304L 및 STS316L 용접부의 응력 부식 균열 개선을 위한 저온 분사 코팅의 잔류 응력 감소 효과에 대한 연구)

  • Kwang Yong Park;Deog Nam Shim;Jong Moon Ha;Sang Dong Lee;Sung Woo Cho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.102-108
    • /
    • 2023
  • A Chloride-induced stress corrosion cracking (CISCC) of austenite stainless steel in dry cask storage system (DCSS) can occur with extending service time than originally designed. Cold spray coating (CSC) not only form a very dense microstructure that can protect from corrosive environments, but also can generate compressive stress on the surface. This characteristic of CSC process is very helpful to increase the resistance for CISCC. CSC with several powders, such as 304L, 316L and Ni can be optimized to form very dense coating layer. In addition, the impact energy generated as the CSC powder collides with the surface of base metal at a speed of Mach 2 or more can remove the residual tensile stress of welding area and serve the compress stress. CSC layers include no oxidation and no contamination with under 0.2% porosity, which is enough to protect from the penetration of corrosive chloride. Therefore, the CSC coating layer can be accompanied by a function that can be disconnected from the corrosive environment and an effect of improving the residual stress that causes CISCC, so the canister's CISCC resistance can be increased.

Effects of transition layer in SiO2/SiC by the plasma-assisted oxidation

  • Kim, Dae-Gyeong;Gang, Yu-Seon;Gang, Hang-Gyu;Baek, Min;O, Seung-Hun;Jo, Sang-Wan;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.193.2-193.2
    • /
    • 2016
  • We evaluate the change in defects in the oxidized SiO2 grown on 4H-SiC (0001) by plasma assisted oxidation, by comparing with that of conventional thermal oxide. In order to investigate the changes in the electronic structure and electrical characteristics of the interfacial reaction between the thin SiO2 and SiC, x-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), DFT calculation and electrical measurements were carried out. We observed that the direct plasma oxide grown at the room temperature and rapid processing time (300 s) has enhanced electrical characteristics (frequency dispersion, hysteresis and interface trap density) than conventional thermal oxide and suppressed interfacial defect state. The decrease in defect state in conduction band edge and stress-induced leakage current (SILC) clearly indicate that plasma oxidation process improves SiO2 quality due to the reduced transition layer and energetically most stable interfacial state between SiO2/SiC controlled by the interstitial C.

  • PDF

Mechanical and Oxidation Properties of Cold-Rolled Zr-Nb-O-S Alloys

  • Lee, Jong-Min;Nathanael, A.J.;Shin, Pyung-Woo;Hong, Sun-Ig;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.161-167
    • /
    • 2011
  • The stress-strain responses and oxidation properties of cold-rolled Zr-1.5Nb-O and Zr-1.5Nb-O-S alloys were studied. The U.T.S. (ultimate tensile strength) of cold-rolled Zr-1.5Nb-O-S alloy with 160 ppm sulfur (765 MPa) were greater than that of Zr-1Nb-1Sn-0.1Fe alloy (750 MPa), achieving an excellent mechanical strength even after the elimination of Sn, an effective solution strengthening element. The addition of sulfur increased the strength at the expense of ductility. However, the ductile fracture behavior was observed both in Zr-Nb-O and Zr-Nb-O-S alloys. The beneficial effect of sulphur on the strengthening was observed in the cold rolled Zr-1.5Nb-O-S alloys. The activation volume of cold-rolled Zr-1.5Nb decreased with sulfur content in the temperature region of dynamic strain aging associated with oxygen atoms. Insensitivity of the activation volume to the dislocation density and the decrease of the activation volume at a higher temperature where the dynamic strain aging occurs support the suggestion linking the activation volume with the activated bulge of dislocations limited by segregation of oxygen and sulfur atoms. The addition of sulfur was also found to improve the oxidation resistance of Zr-Nb-O alloys.

The influence of mechanical damage on the formation of the structural defects on the silicon surface during oxidation (규소 결정 표면의 구조 결함의 형성에 미치는 기계적 손상의 영향)

  • Kim, Dae-Il;Kim, Jong-Bum;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • During oxidation process, several type of defects are formed on the surface of the silicon crystal which was damaged mechanically before oxidation. As the size of abrasive particle increases multiple dislocation loops are produced favorably over oxidation-induced stacking faults, which are dominantly produced when ground with finer abrasive particle. These defects are not related with the crystal growth process like Czochralski or directional solidification. During directional solidification process, twins and stacking faults are the two major defects observed in the bulk of the silicon crystal. On the other hand, slip dislocations produced by the thermal stress are not observed. Thus, not only in single crystalline silicon crystal but also in multi-crystalline silicon, extrinsic gettering process with programmed production of surface defects might be highly applicable to silicon wafers for purification.

Antioxidant Activity of Medicinal Plant Extracts Used as Folk Remedies by Diabetic Patients

  • Park, Min-Jung;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.2
    • /
    • pp.167-173
    • /
    • 2004
  • The aim of this study was to investigate the antioxidant effect of medicinal plants used by diabetic patients. Fourteen medicinal plants were selected and antioxidant activity such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, inhibition effect of linoleic acid autoxidation and low density lipoprotein (LDL) oxidation, thiobarbituric acid (TBA) value were measured. The Cornus officinalis had DPPH radical scavenging activity of 84.79%, which was higher than the 78.79% for $\alpha$-tocopherol. Rosa rugosa Thunberg, Pueraria thundergiana Bentham, Artemisia princeps var. orientalis and Sasamorpha purpurascens Nakai also had high values. Extracts with higher DPPH radical scavenging activities had higher total phenol concentrations, and positive correlations between these parameters were found. Inhibitory activities of linoleic acid autoxidation, LDL oxidation and TBA value, used as indices of oxidative stress, were observed in most of the selected medicinal plants. The highest inhibitory activity for TBA value was observed in the extract of Pueraria thundergiana Bentham. Rosa rugosa Thunberg (75.50 %), Sasamorpha purpurascens Nakai (74.00 %), and Cornus officinalis (73.00 %) all had high antioxidant activity against linoleic acid autoxidation, similar to that of $\alpha$-tocopherol. The same 3 plants also had high in inhibitory activity against LDL oxidation. Therefore, we demonstrated that medicinal plants used as folk remedy by diabetic patients had antioxidant activity. Especially, Rosa rugosa Thunberg, Cornus officinalis, Pueraria thundergiana Bentham, Arlemisia princeps var. orientalis, and Sasamorpha purpurascens Nakai had high phenol concentrations which resulted in high values for DPPH radical scavenging. These same plants exhibited high values for inhibitory activities for TBA value, linoleic acid autoxidation and LDL oxidation, indices associated with lipid peroxidation.

Superoxide Anion Radical: Principle and Application (슈퍼옥사이드 음이온 라디칼 화학과 응용)

  • Kwon, Bum Gun;Yoon, Jeyong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.593-602
    • /
    • 2009
  • For a long time, there is much interest in the superoxide anion radical as one of reactive oxygen species (ROS) not only in the basic research field of chemistry and physics but also in the life science (or biotechnology). Recently, it is becoming ever more vital since the toxic property of nanomaterials as well as advanced oxidation processes (AOP) frequently employed for controlling pollutants are connected with the formation of superoxide anion radicals. Despite many researches on superoxide anion radical, the quantitative information of its presence and its detailed reaction mechanism in aqueous environments remains largely unclear, causing the controversy and confusion. In this review paper, we attempted to summarize the physicochemical property, mechanisms, and applications of superoxide anion radical. In addition, we briefly incorporated the important application of superoxide anion radical in AOP, nanomaterials, and life science (or biotechnology).

High-temperature Oxidation of CrZrN Films in Air (CrZrN 박막의 대기 중 고온산화)

  • Kim, Min-Jeong;Hwang, Yeon-Sang;Bong, Seong-Jun;Lee, Sang-Yul;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.167-168
    • /
    • 2012
  • Films of CrN, $Cr_{40}Zr_9N$, and $Cr_{31}Zr_{16}N$ were deposited on a steel substrate by closed field unbalanced magnetron sputtering, and their oxidation behaviors at $700^{\circ}C$ and $800^{\circ}C$ for up to 60h in air were investigated. All the deposited films were composed of the CrN phase. Zirconium atoms in $Cr_{40}Zr_9N$ and $Cr_{31}Zr_{16}N$ films partially dissolved in the CrN phase. They advantageously refined the columnar structure, reduced the surface roughness, and increased the microhardness. The CrN film displayed relatively good oxidation resistance, owing to the formation of the highly protective $Cr_2O_3$ on its surface. The $Cr_{40}Zr_9N$ and $Cr_{31}Zr_{16}N$ films oxidized to $Cr_2O_3$ as the major phase and ${\alpha}-ZrO_2$ as the minor one. They oxidized primarily by the inward transport of oxygen. The addition of Zr could not increase the oxidation resistance of the CrN film, because the formed $ZrO_2$ that was intermixed in the $Cr_2O_3$-rich oxide layer was oxygen permeable, and developed the compressive stress in the oxide scale owing to the volume expansion during its formation.

  • PDF