Superoxide Anion Radical: Principle and Application

슈퍼옥사이드 음이온 라디칼 화학과 응용

  • Kwon, Bum Gun (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Yoon, Jeyong (School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
  • 권범근 (서울대학교 화학생물공학부) ;
  • 윤제용 (서울대학교 화학생물공학부)
  • Received : 2009.07.23
  • Accepted : 2009.08.27
  • Published : 2009.12.10

Abstract

For a long time, there is much interest in the superoxide anion radical as one of reactive oxygen species (ROS) not only in the basic research field of chemistry and physics but also in the life science (or biotechnology). Recently, it is becoming ever more vital since the toxic property of nanomaterials as well as advanced oxidation processes (AOP) frequently employed for controlling pollutants are connected with the formation of superoxide anion radicals. Despite many researches on superoxide anion radical, the quantitative information of its presence and its detailed reaction mechanism in aqueous environments remains largely unclear, causing the controversy and confusion. In this review paper, we attempted to summarize the physicochemical property, mechanisms, and applications of superoxide anion radical. In addition, we briefly incorporated the important application of superoxide anion radical in AOP, nanomaterials, and life science (or biotechnology).

오랫동안 슈퍼옥사이드 음이온 라디칼(superoxide anion radical)은 활성산소(reactive oxygen species, ROS) 화학종으로서 물리화학적 기초 연구에서부터 생명과학(혹은 생명공학) 분야에 이르기까지 상당한 관심의 대상이었다. 최근에는 고도산화공정(advanced oxidation processes, AOP, 혹은 advanced oxidation technologies, AOT)을 이용하는 오염물 제어 분야뿐만 아니라 나노물질에 의한 유해성을 평가하는데 있어서 슈퍼옥사이드 음이온 라디칼이 중요한 화학종으로 주목을 받고 있다. 그럼에도 불구하고 슈퍼옥사이드 음이온 라디칼에 대한 명확한 이해가 부족하여 관련 연구자들 사이에서 불필요한 논쟁과 혼동을 일으키고 있으며 슈퍼옥사이드 음이온 라디칼의 물리화학적 성질에 대한 오해를 가중시키고 있다. 이 글에서는 기존 연구에서 행해진 슈퍼옥사이드 음이온 라디칼의 물리화학적 특성 및 그 반응성에 대해 정리하였고 고도산화공정, 나노물질 및 생명공학 분야 등에서 슈퍼옥사이드 음이온 라디칼이 갖는 중요성을 서술하였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. C. von Sonntag and H.-P. Schuchmann, Angew. Chem. Int. Ed. Engl., 30, 1229 (1991) https://doi.org/10.1002/anie.199112291
  2. C. von Sonntag, Free-radical-induced DNA damage and its repair: A Chemical Perspective. Springer, Berlin, 2006, 357-481
  3. B. H. J. Bielski, D. E. Cabelli, R. L. Arudi, and A. B. Ross, J. Phys. Chem. Ref. Data, 14, 1041 (1985) https://doi.org/10.1063/1.555739
  4. B. H. J. Bielski and A. O. Allen, J. Phys. Chem., 81, 1048 (1977)
  5. I. Kruk, Environmental Toxicology and Chemistry of Oxygen Species. The Handbook of Environmental Chemistry, Volume 2 Reactions and Processes (Part I), ed. O. Hutzinger, 5, Springer, Berlin (1997)
  6. Encyclopedia of Science & Technology, 17 SOR-SUP, 10th Edition, 748, McGraw-Hill, New York (2007)
  7. J. M. McCord and I. Fridovich, J. Biol. Chem., 244, 6049 (1969)
  8. I. Fridovich, J. Biol. Chem., 272, 18515 (1997) https://doi.org/10.1074/jbc.272.30.18515
  9. L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink, and W. J. Stark, Environ. Sci. Technol., 41, 4158 (2007) https://doi.org/10.1021/es062629t
  10. A. Nel, T. Xia, L. M$\ddot{a}$dler, and N. Li, Science, 311, 622 (2006) https://doi.org/10.1126/science.1114397
  11. A. D. Maynard, R. J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberd$\ddot{o}$rster, M. A. Philbert, J. Ryan, A. Seaton, V. Stone, S. S. Tinkle, l. Tran, N. J. Water, and D. B. Warheit, Nature, 444, 267 (2006) https://doi.org/10.1038/444267a
  12. H. J. H. Fenton, J. Chem. Soc. Proc., 10, 157 (1894)
  13. H. Lim, K. C. Namkung, and J. Yoon, J. Korean Ind. Eng. Chem., 16, 9 (2005)
  14. F. Haber and J. J. Weiss, Proc. R. Soc. London, Ser. A., 147, 332 (1934) https://doi.org/10.1098/rspa.1934.0221
  15. Wikipedia homepage, http://en.wikipedia.org/wiki/Electron_spin_resonance (2009)
  16. 김영곤, 김영균, 프리라디칼: 유해 활성산소를 중심으로, 240, 도서출판 여민각, 서울 (1997)
  17. I. Fridovich, Acc. Chem. Res., 5, 321 (1972) https://doi.org/10.1021/ar50058a001
  18. S. G. Lias, J. F. Liebman, and R. D. Levin, J. Phys. Chem. Ref. Data, 13, 1984
  19. R. Sanders, Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry, http://www.mpch-mainz.mpg.de/~sander/res/henry.html. version 3 (1999)
  20. C. Bull, G. J. McClune, and J. A. Fee, J. Am. Chem. Soc., 105, 5290 (1983) https://doi.org/10.1021/ja00354a019
  21. C. Bull and J. A. Fee, J. Am. Chem. Soc., 107, 3295 (1985) https://doi.org/10.1021/ja00297a040
  22. C. Bull, E. C. Niederhoffer, T. Yoshida, and J. A. Fee, J. Am. Chem. Soc., 113, 4069 (1991) https://doi.org/10.1021/ja00011a003
  23. B. G. Kwon and J. H. Lee, Anal. Chem., 76, 6359 (2004) https://doi.org/10.1021/ac0493828
  24. B. G. Kwon, E. Kim, and J. H. Lee, Chemosphere, 74, 1335 (2009) https://doi.org/10.1016/j.chemosphere.2008.11.049
  25. B. G. Kwon and J. H. Lee, Bull. Korean Chem. Soc., 27, 1785 (2006) https://doi.org/10.5012/bkcs.2006.27.11.1785
  26. J. Staehelin and J. Hoign\acute{e}, Environ. Sci. Technol., 16, 676 (1982) https://doi.org/10.1021/es00104a009
  27. R. E. B\acute{e}hler, J. Staehelin, and J. Hoign\acute{e}, J. Phys. Chem. 88, 2560 (1984) https://doi.org/10.1021/j150656a026
  28. U. von Gunten, Water Res., 37, 1443 (2003) https://doi.org/10.1016/S0043-1354(02)00457-8
  29. J. Hoign\acute{e}, H. Bader, W. R. Haag, and J. Staehelin, Water Res., 19, 993 (1985) https://doi.org/10.1016/0043-1354(85)90368-9
  30. J. Staehelin and J. Hoign\acute{e}, Environ. Sci. Technol., 19, 1206 (1985) https://doi.org/10.1021/es00142a012
  31. R. Flyunt, A. Leitzke, G. Mark, E. Mvula, E. Reisz, R. Schick, and C. von Sonntag, J. Phys. Chem. B, 107, 7242 (2003) https://doi.org/10.1021/jp022455b
  32. W. H. Glaze, Y. Lay, and J. W. Kang, Ind. Eng. Chem. Res., 34, 2314 (1995) https://doi.org/10.1021/ie00046a013
  33. K. Sehested, H. Corfitzen, J. Holcman, C. H. Fischer, and E. J. Hart, Environ. Sci. Technol., 25, 1589 (1991) https://doi.org/10.1021/es00021a010
  34. J. L. Acero, K. Stemmler, and U. von Gunten, Environ. Sci. Technol., 34, 591 (2000) https://doi.org/10.1021/es990724e
  35. L. Forni, D. Bahnemann, and E. J. Hart, J. Phys. Chem., 86, 255 (1982) https://doi.org/10.1021/j100391a025
  36. K. Sehested, J. Holcman, and E. J. Hart, J. Phys. Chem., 87, 1951 (1983) https://doi.org/10.1021/j100234a024
  37. M. R. Hoffman, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995) https://doi.org/10.1021/cr00033a004
  38. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C: Reviews., 1, 1 (2000) https://doi.org/10.1016/S1389-5567(00)00002-2
  39. Y. Nosaka, Y. Yamashita, and H. Fukuyama, J. Phys. Chem. B, 101, 5822-(1997) https://doi.org/10.1021/jp970400h
  40. T. Hirakawa and Y. Nosaka, Langmuir, 18, 3247 (2002) https://doi.org/10.1021/la015685a
  41. T. Hirkawa, T. Daimon, M. Kitazawa, N. Ohguri, C. Koga, N. Negishi, S. Matsuzawa, and Y. Nosaka, J. Photochem. Photobiol. A: Chemistry, 190, 58 (2007) https://doi.org/10.1016/j.jphotochem.2007.03.012
  42. H. Gerischer and A. Heller, J. Phys. Chem., 95, 5261 (1991) https://doi.org/10.1021/j100166a063
  43. R. Nakamura and Y. Nakato, J. Am. Chem. Soc., 126, 1290 (2004) https://doi.org/10.1021/ja0388764
  44. K. Ishibashi, Y. Nosaka, K. Hashimoto, and A. Fujishima, J. Phys. Chem. B, 102, 2117 (1998) https://doi.org/10.1021/jp973401i
  45. K. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 104, 4934 (2000) https://doi.org/10.1021/jp9942670
  46. T. Hirakawa, H. Kominami, B. Ohtani, and Y. Nosaka, J. Phys. Chem. B, 105, 6993 (2001) https://doi.org/10.1021/jp0112929
  47. T. Hirakawa, Y. Nakaoka, J. Nishino, and Y. Nosaka, J. Phys. Chem. B, 103, 4399 (1999) https://doi.org/10.1021/jp9840984
  48. T. Hirkawa, K. Yawata, and Y. Nosaka, Applied Catalysis A, 325, 105 (2007) https://doi.org/10.1016/j.apcata.2007.03.015
  49. B. G. Kwon, J. Photochem. Photobiol., A, 199, 112 (2008) https://doi.org/10.1016/j.jphotochem.2008.05.001
  50. S. R. Cater, M. I. Stefan, J. R. Bolton, and A. Safarzadeh-Amiri, Environ. Sci. Technol., 34, 659 (2000) https://doi.org/10.1021/es9905750
  51. M. I. Stefan and J. R. Bolton, Environ. Sci. Technol., 32, 1588 (1998) https://doi.org/10.1021/es970633m
  52. O. Legrini, E. Oliveros, and A. M. Braun, Chem. Rev., 93, 671 (1993) https://doi.org/10.1021/cr00018a003
  53. K. A. Hislop and J. R. Bolton, Environ. Sci. Technol., 33, 3119 (1999) https://doi.org/10.1021/es9810134
  54. E. J. Rosenfeldt and K. G. Linden, Environ. Sci. Technol., 41, 2548 (2007) https://doi.org/10.1021/es062353p
  55. S. R. Sarathy and M. Mohseni, Environ. Sci. Technol., 41, 8315 (2007) https://doi.org/10.1021/es071602m
  56. J. Jeong and J. Yoon, Water Res., 39, 2893 (2005) https://doi.org/10.1016/j.watres.2005.05.014
  57. N. Getoff, Radiat. Phys. Chem., 47, 581 (1996) https://doi.org/10.1016/0969-806X(95)00059-7
  58. A. K. Pikaev, High Energ. Chem., 34, 1(2000) https://doi.org/10.1007/BF02761780
  59. A. K. Pikaev, High Energ. Chem. 34, 55 (2000) https://doi.org/10.1007/BF02761832
  60. M. G. Nickelsen, W. J. Cooper, C. N. Kurucz, and T. D. Waite, Environ. Sci. Technol., 26, 144 (1992) https://doi.org/10.1021/es00025a016
  61. M. G. Nickelsen, W. J. Cooper, K. Lin, and C. N. Kurucz, Water Res., 28, 1227 (1994) https://doi.org/10.1016/0043-1354(94)90211-9
  62. C. N. Kurucz, T. D. Waite, and W. J. Cooper, Radiat. Phys. Chem., 45, 299 (1995) https://doi.org/10.1016/0969-806X(94)00075-1
  63. M. G. Bettoli, M. Ravanelli, L. Tositti, O. Tubertini, L. Guzzi, W. Martinotti, G. Gueirazza, and M. Tamba, Radiat. Phys. Chem., 52, 327 (1998) https://doi.org/10.1016/S0969-806X(98)00027-9
  64. D. C. Schmelling, D. L. Poster, M. Chaychian, P. Neta, J. Silverman, and M. Al-Sheikhly, Environ. Sci. Technol., 32, 270 (1998) https://doi.org/10.1021/es9704601
  65. R. Zona, S. Schimid, and S. Solar, Water Res., 33, 1314 (1999) https://doi.org/10.1016/S0043-1354(98)00319-4
  66. S. Weihua, Z. Zheng, A.-S. Rami, Z. Tao, and H. Desheng, Radiat. Phys. Chem., 65, 559 (2002) https://doi.org/10.1016/S0969-806X(02)00365-1
  67. K. Lin, W. J. Cooper, M. G. Nickelsen, C. N. Kurucz, and T. D. Waite, Appl. Radiat. Isotopes, 46, 1307 (1995) https://doi.org/10.1016/0969-8043(95)00236-7
  68. F. T. Mak, S. R. Zele, W. J. Cooper, C. N. Kurucz, T. D. Waite, and M. G. Nickelsen, Water Res., 31, 219 (1997) https://doi.org/10.1016/S0043-1354(96)00264-3
  69. P. Gehringer, H. Eschweiler, and H. Fiedler, Radiat. Phys. Chem.,46, 1075 (1995) https://doi.org/10.1016/0969-806X(95)00324-Q
  70. P. Gehringer, H. Eschweiler, W. Szinovatz, H. Fiedler, R. Steiner, and G. Sonneck, Radiat. Phys. Chem., 42, 711 (1993) https://doi.org/10.1016/0969-806X(93)90357-Z
  71. P. Gehringer and H. Fiedler, Radiat. Phys. Chem., 52, 345 (1998) https://doi.org/10.1016/S0969-806X(98)00031-0
  72. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data, 17, 513 (1988) https://doi.org/10.1063/1.555805
  73. R. J. Woods, Radiation Chemistry and its Application to Environmental Pollution, eds. W. J. Cooper, R. D. Curry, K. E. O'Shea, Environmental Applications of Ionizing Radiation, 1, John Wiley & Sons, INC., New York (1998)
  74. X. Fang, Y. He, J. Liu, and J. Wu, Radiat. Phys. Chem., 53, 411 (1998) https://doi.org/10.1016/S0969-806X(98)00128-5
  75. K. Donaldson, Nanotoxicity 2007, Sofitel Bercy Paris, Paris, France, (2007)
  76. G. Mer\acute{e}nyi, J. Lind, and T. E. Eriksen, J. Phys. Chem., 88, 2320 (1984) https://doi.org/10.1021/j150655a027
  77. G. Mer\acute{e}nyi, J. Lind, X. Shen, and T. E. Eriksen, J. Phys. Chem., 94, 748 (1990) https://doi.org/10.1021/j100365a043
  78. M. Cho, H. Chung, W. Choi, and J. Yoon, Appl. Environ. Microbio., 71, 270 (2005) https://doi.org/10.1128/AEM.71.1.270-275.2005
  79. J. Zheng, S. R. Springston, and J. Weinstein-Lioyd, Anal. Chem., 75, 4696 (2003) https://doi.org/10.1021/ac034429v
  80. S. E. Schwartz, J. Geophys. Res., 89, 11589 (1984)