• Title/Summary/Keyword: Oxidation of carbon

Search Result 1,103, Processing Time 0.027 seconds

Friction and Wear Behavior of Carbon/Carbon Composites for Aircraft Brake Material (항공기 브레이크 재료용 탄소/탄소 복합재료의 마찰 및 마모 거동)

  • 우성택;윤재륜
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1993
  • Friction and wear behavior of a carbon/carbon composite material for aircraft brake material was experimentally investigated. Friction and wear test setup was designed and built for the experiment. Friction and wear tests were conducted under various sliding conditions. Friction coefficients were measured and processed by a data acquisition system and amount of wear measured by a balance. Stainless steel disk was used as the counterface material. Temperature was also measured by inserting thermocouple 2.5 mm beneath the sliding surface of the carbon/carbon composite specimen. Wear surfaces were observed by SEM, and analyzed by EDAX. The experimental results showed that sliding speed and normal force did not have significant effects on friction coefficient and wear factor of the composite. Temperature increase just below the surface was not large enough to cause any thermal degradation or oxidation which occurred at higher temperature when tested by TGA. Wear film was generated both on the specimen and on the counterface at relatively low sliding speed but cracks, grooves, and wear debris were observed at high sliding speed. Friction coefficient remained almost constant when the sliding speed or normal load was varied. It is believed that the adhesive and abrasive components contributed mainly to the friction coefficient. Wear behavior at low sliding speed was governed by wear film formation and adhesive wear mechanism. At high speed, fiber orientation, ploughing by counterface asperities, and fiber breakage dominated wear of the carbon/carbon composite.

Electrical Conductivity of Polymeric Composites with respect to Damage of Carbon Nanotube (탄소나노튜브의 손상에 따른 전기전도도 변화)

  • Kim Yun Jin;Jeong Yeon Chun;Yun Ho Gyu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.22-26
    • /
    • 2003
  • Electrical conductivity of the oxidized MWNT(Multi walled nanotubes)/polymer composites were investigated with respect to various oxidative conditions of acid concentration, treatment temperature, and treatment time. To remove the impurities existing in MWNT-deposites, liquid-phase oxidation was performed using the $HNO_3/HSO_4$ mixtures. Secondary effects occurred by the oxidation of MWNTs such as the damages of MWNTs and the introduction of functionalities were analyzed through measuring FT-IR, TEM, and zeta potential, All the oxidized NWNTs were functionalized with carboxylic groups and the conditions of oxidation of the MWNTs could have a certain influence on the degree of functionalization, damages, and dispersion of the MWNT. The electrical properties of MWNT composites strongly depend on the oxidative conditions of MWNTs. The conductivity of the composites filled with the proper oxidized MWNT showed the highest percolation threshold.

  • PDF

Oxidation of Carbon Monoxide by Pseudomonas carboxydohydrogena (Pseudomonas carboxydohydrogena에 의한 일산화탄소의 산화)

  • ;Hegeman, George
    • Korean Journal of Microbiology
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 1983
  • The stoichiometry between the consumption of CO and $O_2$ and the production of $CO_2(2CO+O_2{\rightarrow}2CO_2)$) showed that Pseudomonas carboxydohydrogena grows as a typical aerobic CO oxidizer with CO. The optimal concentration of CO for growth was found to be 30% in gas mixture with air. The initial buffer concentration of the culture medium did not affect the growth of this bacterium. P. carboxydohydrogena is an obligate aerobe and dose not use nitrate as a terminal electron acceptor. The CO dehydrogenase is an inducible and soluble enzyme. The reaction rate and stability were maximal at pH7.5, and the Arrhenius plot revealed an activation energy of 37.7kJ/mol (9.0 Kcal/mol). The crude enzyme used methylene blue, thionin, and toluylene blue as electron acceptors for the oxidation of CO to $Co_2$ under anaerobic conditions. It was found that water must be the source of the second oxygen atom for CO oxidation.

  • PDF

Low Temperature Catalytic Activity of Cobalt Oxide for the Emergency Escape Mask Cartridge

  • Park, Jae-Man;Kim, Deog-Ki;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.58-61
    • /
    • 2002
  • A preparation method of cobalt supported alumina catalyst for a emergency escape mask cartridge has been studied. Catalysts were prepared by incipient wetness impregnation method using pre-shaped $\gamma$=alumina powders of 70-100 mesh. The catalyst was tested in a continuous-flow reactor system and characterized by elemental analysis, BET and TGA-DTA techniques. Cobalt shows higher activity than platinum or nickel for carbon monoxide oxidation at room temperature. Optimum loading amount of cobalt was 10 wt.% for CO oxidation and the reaction activity increases gradually with the increase of calcination temperature up to $450^{\circ}C.

Removal Characteristics of Phenol at Advanced Oxidation Process with Ozone/Activated Carbon Impregnated Metals (오존/촉매 산화공정에서 금속담지 활성탄을 이용한 페놀의 분해 특성)

  • Choi, Jae Won;Yoon, Ji Young;Park, Jin Do;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.302-307
    • /
    • 2012
  • Advanced oxidation processes (AOP) such as O3/activated carbon process and O3/catalysts process were used to compare the decomposition of phenol. Catalysts such as Pd/activated carbon (Pd/AC), Mn/activated carbon (Mn/AC), Co/activated carbon (Co/AC) and Fe/activated carbon (Fe/AC) were prepared by impregnation of Pd, Mn, Co and Fe into the activated carbon of pellet form, respectively. Based on an hour of reactions, the following descending order for the decomposition ratios of dissolved O3 to the 1.48 mg/L of saturated dissolved O3 was observed: Mn/AC (45%) > Pd/AC (42%) > Co/AC (33%) > AC (31%) > Fe/AC (27%). The removal efficiencies of phenol were also arranged in the descending order of AOP as follows: Mn/AC (89%) > Pd/AC (85%) > Co/AC (77%) > AC (76%) > Fe/AC (71%). The remaining ratios (C/Co) of TOC (total organic carbon) after an hour of experiments were arranged in the ascending order of AOP as follows : Pd/AC (0.29) < Mn/AC (0.36) < AC (0.40) < Co/AC (0.49) < Fe/AC (0.51). However, the catalytic effects in the Co/AC and the Fe/AC processes were little in comparison with O3/AC process. The maximum concentrations of intermediates such as hydroquinone and catechol formed from the decomposition of phenol were arranged in the ascending order of AOP as follows: Pd/AC < Fe/AC < Co/AC < AC < Mn/AC. In the case of Pd/AC process, these intermediates were almost disappeared after an one hour of reaction.

A Study on the Treatment of Organic Wastewater by Ozone Electrolysis (유기성 폐수의 오존전해처리에 관한 연구)

  • 정홍기;이태호
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.59-63
    • /
    • 1996
  • To treat certain wastewater that has alcohol and phenol, we performed the ozone electrolysis by using the titanium electrode. In this experiment, we examined decomposition voltage of organics, time for electrolysis, and removal efficiency of organics. In addition we compared the ozone oxidation electrolysis. The followings are results; 1. When it comes to the alcohol treatment in wastewater, ozone electrolysis showed higher removal efficiency than ozone oxidation or electrolysis. 2. After comparing the decomposition rate of methylalcohol, ethylalcohol, and prophylalcohol in ozone electrolysis, we knew the fact that increasing carbon number made the decomposition rate slow. 3. According to the treatment of alcohol by ozone electrolysis, decomposition voltage was 50V, time for electrolysis was three hours, and treatment acidity was neutral (pH 6.5 - 8.1). 4. Ozone electrolysis was effective to the phenol treatment. When we treated phenol by using ozone electrolysis for three hours, TOC treatment efficiency was 95%. However, ozone oxidation just showed 45% treatment efficiency.

  • PDF

Kinetics and Mechanism of the Oxidation of Carbon Monoxide on H$_2$-Reduced NiO-Doped $\alpha$-Fe$_2O_3$

  • Kim, Don;Kim, Keu-Hong;Choi, Jae-Shi
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.81-84
    • /
    • 1988
  • The CO oxidation was performed on $H_2$-reduced NiO-${\alpha}-Fe_2O_3$ in the temperature range 150-$250^{\circ}C$. The kinetic study and the conductivity measurements indicate the oxidation reaction follows Langmuir-Rideal type process that is uncommon in heterogeneous catalyst$^1$. No active site is found on the catalyst surface for CO adsorption, but an oxygen vacancy adsorbs an oxygen, and this step is rate initiation. The partial orders are half for $O_2$ and first for CO, respectively. Apparent activation energy for over-all reaction is 9.05 kcal/mol.

Fabrication and Characterization of Carbon Nanotube-modified Carbon Paper-based Lactate Oxidase-catalase Electrode (탄소나노튜브로 개질된 탄소종이 기반 젖산산화효소 - 카탈레이즈 전극 제작 및 특성 분석)

  • Ke Shi;Varshini Selvarajan;Yeong-Yil Yang;Hyug-Han Kim;Chang-Joon Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.576-583
    • /
    • 2023
  • This study aimed to investigate the impact of enhancing the electrode conductivity and mitigating the production of hydrogen peroxide - a by-product arising from lactate oxidation - on the performance of lactate electrodes. The electrical conductivity of the electrode was improved by modifying the surface of carbon paper with single-walled carbon nanotubes. Catalase was introduced to effectively eliminate the hydrogen peroxide produced during the lactate oxidation reaction. The carbon paper electrode, with simultaneous immobilization of both lactate oxidase and catalase, yielded a current 1.7 times greater than the electrode where only lactate oxidase was immobilized. The electrode in which lactate oxidase and catalase were co-immobilized on the surface of carbon paper modified with single-walled carbon nanotubes, produced a current of 171 µA, which was more than twice as much current as the carbon paper with only lactate oxidase immobilized. The optimized electrode showed a linear response up to lactate concentration of 20 mM, confirming that it can be used as a sensor electrode.

The Effect of Gasoline Engine Oil Degradation and Piston Temperature on Carbon Deposit Formation; Part I-Characteristics of deposit formation on gasoline engine (엔진 오일 열화와 피스톤 온도가 카본 디포짓 형성에 미치는 영향 Part I-가솔린 엔진의 디포짓 형성 특성)

  • 김중수;민병순;이두순;오대윤;최재권
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.33-39
    • /
    • 1997
  • In order to establish a new temperature criterion to prevent the pistons from ring sticking due to deposit formation, bench test and engine test were performed. The effects of oil degradation and temperature on deposit formation was studied by a modified panel coking test. Oil degradation was analyzed by FTIR. Oil oxidation and nitration were selected as a factors to evaluate oil degradation. Bench test results show that oil oxidation is more effective to the deposit formation than oil nitration. And the temperature increase accelerates deposit formation and deposit formation increase rapidly above 26$0^{\circ}C$. Especially, in case of degraded oil, the deposit formation increases so rapidly that ring sticking can occur. The effect of piston temperature on the deposit formation was confirmed by engine test.

Removal of As(III) and Phenol by Multi-functional Property of Activated Carbon Impregnated With Manganese (망간첨착 활성탄의 다기능성을 이용한 3가 비소 및 페놀 제거)

  • Yu, Mok-Ryun;Hong, Soon-Chul;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.52-58
    • /
    • 2008
  • Mn-impregnated activated carbon (Mn-AC) prepared at different conditions was applied in the treatment of synthetic wastewater containing both organic and inorganic contaminants. Phenol and As(III) was used as the representative organic and inorganic contaminants, respectively. After evaluation of the physicochemical characteristic and stability of Mn-AC, oxidation of As(III) as well as adsorption of phenol by activated carbon(AC) and Mn-AC were investigated in a batch reactor. To investigate the stability of Mn-AC, dissolution of Mn from each Mn-AC was measured pH ranging from 2 to 4. Although Mn-AC was unstable at a strong acidic condition, the dissoluted Mn was below 3 ppm at pH 4. XRD analysis of Mn-AC indicated that the mineral type of the impregnated manganese was $Mn_2O_3$. From the simultaneous treatment of As(III) and phenol by AC and Mn-AC, As(III) oxidation by Mn-AC was greater than that by AC at lower pH, while the reverse order was observed at higher pH. After impregnation of Mn onto AC, 13% decrease of the surface area was observed, causing 8% reduction of phenol removal. Considering removal properties of As(III) and phenol, Mn-AC could be applied in the simultaneous treatment of wastewater contaminated with multi-contaminants.