• Title/Summary/Keyword: Oxidation kinetics

Search Result 271, Processing Time 0.025 seconds

Spectrophotometric Investigation of Oxidation of Cefpodoxime Proxetil by Permanganate in Alkaline Medium: A Kinetic Study (알칼리성 용매에서 과망간에 의한 세프포독심 프록세틸의 산화의 분광광도법적 조사: 속도론적 연구)

  • Khan, Aftab Aslam Parwaz;Mohd, Ayaz;Bano, Shaista;Siddiqi, K. S.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.709-716
    • /
    • 2009
  • A Kinetics pathway of oxidation of Cefpodoxime Proxetil by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically. The reaction showed first order kinetics in permanganate ion concentration and an order less than unity in cefpodoxime acid and alkali concentrations. Increasing ionic strength of the medium increase the rate. The oxidation reaction proceeds via an alkali-permanganate species which forms a complex with cefpodoxime acid. The latter decomposes slowly, followed by a fast reaction between a free radical of cefpodoxime acid and another molecule of permanganate to give the products. Investigations of the reaction at different temperatures allowed the determination of activation parameters with respect to the slow step of proposed mechanism and fallows first order kinetics. The proposed mechanism and the derived rate laws are consistent with the observed kinetics.

Effects of Phosphorus Doping Concentration on the Oxidation Kinetics of Tungsten Polycide I (텅스텐 폴리사이드의 산화반응속도에 미치는 인 도핑 농도의 영향 I)

  • 이종무;윤국한;임호빈;이종길
    • Electrical & Electronic Materials
    • /
    • v.4 no.1
    • /
    • pp.19-30
    • /
    • 1991
  • W/Si의 조성비가 2.6인 CVD텅스텐 실리사이드를 어닐링처리후 dry 또는 wet oxidation하여 폴리사이드 구조에서 다결정 Si내의 농도가 실리사이드의 산화반응속도에 미치는 영향을 조사하였다. 인의 농도에 관계없이 항상 실리사이드의 산화속도가 (100)Si의 그것보다 더 높았다. 저온에서 dry oxidation한 경우 인의 농도가 증가함에 따라 산화속도는 감소하였으나 고온에서 dry oxidation한 경우에는 P농도와 산화속도간에 상관관계가 별로 없었다. 한편, wet oxidation의 경우에는 모든 산화온도에서 인의 농도가 높을수록 실리사인의 산화속도가 더 낮은 것으로 나타났다.

  • PDF

Kinetic and Mechanistic Studies of Oxidation of an Antiallergic Drug with Bromamine-T in Acid and Alkaline Media

  • Puttaswamy, Puttaswamy;Sukhdev, Anu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3544-3550
    • /
    • 2012
  • Cetrizine dihydrochloride (CTZH) is widely used as an anti-allergic drug. Sodium N-bromo-p-toluenesulfonamide or bromamine-T (BAT) is the bromine analogue of chloramine-T (CAT) and is found to be a better oxidizing agent than CAT. In the present research, the kinetics of oxidation of CTZH with BAT in acid and alkaline media was studied at 313 K. The experimental rate laws obtained are: -d[BAT]/dt=$k[BAT][CTZH]^{0.80}[H^+]^{-0.48}$ in acid medium and -d[BAT]/dt=$k[BAT][CTZH]^{0.48}[OH^-]^{0.52}[PTS]^{-0.40}$ in alkaline medium where PTS is p-toluenesulfonamide. Activation parameters and reaction constants were evaluated. The solvent isotope effect was studied using $D_2O$. The dielectric effect is positive. The stoichiometry of the reaction was found to be 1:1 and the oxidation products were identified as 4-chlorobenzophenone and (2-piperazin-1-yl-ethoxy)-acetic acid in both media. The rate of oxidation of CTZH is faster in acid medium. Suitable mechanisms and related rate laws have been worked out.

Fenton Process for Treatment of Contaminated Groundwater

  • Jung, Oh-Jin;Park, Chil-Nam
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.165-172
    • /
    • 2001
  • We investigated the optimal experimental conditions and reaction kinetics for the decompositions of PCE, TCE, naphthalene, and chloroform using conventional Fenton oxidation process. Additionally, the influence of pH on the decompositions of PCE was also evaluated. The results indicated that the optimal pH value was around 3. The dosage of Fenton's reagent and the molar ratio of hydrogen peroxide to ferrous ion for an approximately complete decomposition was found to depend on the properties of the organic compound. Due to their unsaturated structures, the results show that PCE, TCE, and naphthalene could be all effectively decomposed by Fenton's reagent oxidation. Their unsaturated structures could be mostly destoyed within first 1-2 minutes at a low dosage with an certain molar ratio of hydrogen peroxide to ferrous ion. However the saturated compound such as chloroform was more difficult to decompose even with a relatively high dosage of Fenton's reagent.

  • PDF

A Kinetic Study on the Oxidation of Indole by Peroxomonosulphate in Acetonitrile Solvent

  • Kavery, Muniyappan;Govindasamy, Chandramohan;Johnson, Stephen
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.210-215
    • /
    • 2013
  • Kinetics of oxidation of indole by peroxomonosulphate (PMS) in aqueous acetonitrile medium has been investigated. The reaction follows a total second order, first order each with respect to [Indole] and [PMS]. The rate of the reaction was not affected by added [$H^+$]. Variation of ionic strength (${\mu}$) had no influence on the rate. Increase of percentage of acetonitrile decreased the rate. Absen ce of any polymerization indicated a nonradical pathway. Activation and thermodynamic parameters have bee n computed. A suitable kinetic scheme based on these observations is proposed. The reactivity of PMS towards Indole was found to be higher than that with peroxodisulphate.

Kinetics and Mechanisms of the Oxidation of Carbon Monoxide on Ni-Doped $\alpha-Fe_2O_3$

  • Kim, Keu-Hong;Jun, Jong-Ho;Choi, Jae-Shi
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.41-44
    • /
    • 1984
  • The oxidation of carbon monoxide has been investigated on Ni-doped ${\alpha}-Fe_2O_3$ catalyst at 300 to $450^{\circ}$. The oxidation rates have been correlated with 1.5-order kinetics; first with respect to CO and 1/2 with respect to $O_2$. Carbon monoxide is adsorbed on lattice oxygen of Ni-doped ${\alpha}-Fe_2O_3$, while oxygen appears to be adsorbed on oxygen vacancy formed by Ni-doping. The conductivities show that adsorption of CO on O-lattice produces conduction electron and adsorption of $O_2$ on O-vacancy withdraws the conduction electron from vacancy. The adsorption process of CO on O-lattice is rate-determining step and dominant defect of Ni-doped ${\alpha}-Fe_2O_3$ is suggested from the agreement between kinetic and conductivity data.

Kinetics of veratryl alcohol oxidation by lignin peroxidase and in-situ generated $H_2O_2$ in an electrochemical reactor

  • Lee, Gi-Beom;Gu, Man-Bok;Mun, Seung-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.524-527
    • /
    • 2000
  • An electroenzymatic system to oxidize veratryl alcohol of on electrodes with in-situ generated hydrogen peroxide was studied. We investigated hydrogen peroxide generation, current efficiency, and veratryl alcohol oxidation in the electrode system at various conditions. The reaction rates of veratryl alcohol oxidation were compared in an electrochemical, an electroenzymatic, and an usual biochemical systems to prove the concept of electroenzymatic oxidation.

  • PDF

A Study on Char Oxidation Kinetics by Direct Measurement of Coal Ignition Temperature (석탄점화온도의 직접적인 측정에 의한 촤산화 반응율 도출에 대한 연구)

  • Kwon, Jong-Seo;Kim, Ryang-Gyoon;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.346-352
    • /
    • 2011
  • The experiment was designed to study the char oxidation kinetics of pulverized coals commonly utilized in Korean power plants. The kinetics has been estimated using the Semenov's thermal spontaneous ignition theory adapted to coal char particle ignition temperature. The ignition temperature of coal char particle is obtained by a direct measurement of the particle temperature with photo detector as well as by means of a solid thermocouple which is used as both a heating and a measuring element. The ignition temperatures for subbituminous coal, Wira, and bituminous coal, Yakutugol, have been measured for 4 sizes in the range of 0.52-1.09 mm. The ignition temperature of the particle increases with the increasing diameter. The results were used to calculate the activation energy and the pre-exponential factor. As a result, the kinetic parameters are in an agreement with ones reported from other investigations.

Effect of Mo and Mn Addition on the Oxidation Behavior of Binary Ti-Al Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.361-364
    • /
    • 2018
  • Binary Ti-Al alloys below 51.0 mass%Al content exhibit a breakaway, transferring from parabolic to linear rate law. The second $Al_2O_3$ layer might have some protectiveness before breakaway. Ti-63.1 mass%Al oxidized at 1173 K under parabolic law. Breakaway oxidation is observed in every alloy, except for Ti-63.1 mass%Al. After breakaway, oxidation rates of the binary TiAl alloys below 34.5 mass%Al obey almost linear kinetics. The corrosion rate of Ti-63.1 mass%Al appears to be almost parabolic. As content greater than 63.0 mass% is found to be necessary to form a protective alumina film. Addition of Mo improves the oxidation resistance dramatically. No breakaway is observed at 1123 K, and breakaway is delayed by Mo addition at 1173 K. At 1123 K, no breakaway, but a parabolic increase in mass gain, are observed in the Mo-added TiAl alloys. The binary Ti-34.5 mass%Al exhibits a transfer from parabolic to linear kinetics. At 1173 K, the binary alloys show vary fast linear oxidation and even the Mo-added alloys exhibit breakaway oxidation. The 2.0 mass%Mo-added TiAl exhibits a slope between linear and parabolic. At values of 4.0 and 6.0 mass% added TiAl alloys, slightly larger rates are observed than those for the parabolic rate law, even after breakaway. On those alloys, the second $Al_2O_3$ layer appears to be persistently continuous. Oxidation resistance is considerably degraded by the addition of Mn. Mn appears to have the effect of breaking the continuity of the second $Al_2O_3$ layer.

Kinetics and Mechanism of the Oxidation of Carbon Monoxide on $ZnCe_{1+y}O_2$ ($ZnCe_{1+y}O_2$상에서 일산화탄소의 산화반응 메카니즘)

  • Kim Keu Hong;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.102-108
    • /
    • 1984
  • The catalytic oxidation of CO has been investigated on $ZnCe_{1+y}O_2$ at temperatures from 300 to $500^{\circ}C$ under various P_{CO} and PO_2 conditions. The oxidation rates have been correlated with 1.5-order kinetics: first order with respect to CO and 0.5 order with respect to O2. CO appears to be absorbed essentially on the O lattice of $ZnCe_{1+y}O_2$ as a molecular species, while $O_2$ adsorbs on an O vacancy as an ionic species. The conductivity data show that CO adsorption contributes electron to the conduction band and the adsorption process of $O_2$ withdraws it from an O vacancy. The oxidation mechanism and the defect model of $ZnCe_{1+y}O_2$ are inferred at given temperature and $PO_2'$s from the agreement between the conductivities and kinetic data. It is suggested that CO absorption is the rate-controlling.

  • PDF