DOI QR코드

DOI QR Code

Kinetic and Mechanistic Studies of Oxidation of an Antiallergic Drug with Bromamine-T in Acid and Alkaline Media

  • Puttaswamy, Puttaswamy (Department of Post-Graduate Studies in Chemistry, Bangalore University, Central College Campus) ;
  • Sukhdev, Anu (Department of Post-Graduate Studies in Chemistry, Bangalore University, Central College Campus)
  • Received : 2012.04.09
  • Accepted : 2012.07.30
  • Published : 2012.11.20

Abstract

Cetrizine dihydrochloride (CTZH) is widely used as an anti-allergic drug. Sodium N-bromo-p-toluenesulfonamide or bromamine-T (BAT) is the bromine analogue of chloramine-T (CAT) and is found to be a better oxidizing agent than CAT. In the present research, the kinetics of oxidation of CTZH with BAT in acid and alkaline media was studied at 313 K. The experimental rate laws obtained are: -d[BAT]/dt=$k[BAT][CTZH]^{0.80}[H^+]^{-0.48}$ in acid medium and -d[BAT]/dt=$k[BAT][CTZH]^{0.48}[OH^-]^{0.52}[PTS]^{-0.40}$ in alkaline medium where PTS is p-toluenesulfonamide. Activation parameters and reaction constants were evaluated. The solvent isotope effect was studied using $D_2O$. The dielectric effect is positive. The stoichiometry of the reaction was found to be 1:1 and the oxidation products were identified as 4-chlorobenzophenone and (2-piperazin-1-yl-ethoxy)-acetic acid in both media. The rate of oxidation of CTZH is faster in acid medium. Suitable mechanisms and related rate laws have been worked out.

Keywords

References

  1. Reynolds, J. E. F. Martindale: The Extra Pharmacopoeia; Pharmaceutical Press: London, 1996; p 436.
  2. Sevgi, T. J. Food and Drug Anal. 2010, 18, 440.
  3. Macek, J.; Ptacek, P.; Klíma, J. J. Chroma. B: Bioed. Sci. App. 1999, 736, 231. https://doi.org/10.1016/S0378-4347(99)00464-8
  4. Campbell, M. M.; Johnson, G. Chem. Rev. 1978, 78, 65. https://doi.org/10.1021/cr60311a005
  5. Banerji, K. K.; Jayaram, B.; Mahadevappa, D. S. J. Sci. Ind. Res. 1987, 46, 65.
  6. Kolvari, E.; Ghorbani-Choghamarani, A.; Salehi, P.; Shirini, F.; Zolfigol, M. A. J. Iran Chem. Soc. 2007, 4, 126. https://doi.org/10.1007/BF03245963
  7. Geethanjali, A. Synlett. 2005, 18, 2857.
  8. Rangappa, K. S.; Manjunathaswamy, K.; Raghavendra, M. P.; Made Gowda, N. M. Int. J. Chem. Kinet. 2002, 34, 49. https://doi.org/10.1002/kin.10011
  9. Jagadeesh, R. V.; Puttaswamy, J. Phy. Org. Chem. 2008, 21, 844. https://doi.org/10.1002/poc.1379
  10. Puttaswamy, Anu Sukhdev.; Shubha, J. P. Journal of Mol. Cat. A: Chem. 2009, 310, 24. https://doi.org/10.1016/j.molcata.2009.05.015
  11. Puttaswamy, Vinod, K. N.; Ninge Gowda, K. N. Dyes and Pigments 2008, 78, 131. https://doi.org/10.1016/j.dyepig.2007.11.002
  12. Puttaswamy, Anuradha, T. M.; Ramachandrappa, R.; Made Gowda, N. M. Int. J. Chem. Kinet. 2000, 32, 221. https://doi.org/10.1002/(SICI)1097-4601(2000)32:4<221::AID-KIN4>3.0.CO;2-1
  13. Puttaswamy, Jagadeesh, R. V.; Made Gowda, N. M. Int. J. Chem. Kinet. 2005, 37, 700. https://doi.org/10.1002/kin.20118
  14. Puttaswamy, Shubha, J. P. AIChE Journal 2009, 55, 3234. https://doi.org/10.1002/aic.11980
  15. Ramachandrappa, R.; Puttaswamy, Mayanna, S. M.; Made Gowda, N. M. Int. J. Chem. Kinet. 1998, 30, 407. https://doi.org/10.1002/(SICI)1097-4601(1998)30:6<407::AID-KIN2>3.0.CO;2-W
  16. Nair, C. G. R.; Indrasenan, P. Talanta 1976, 23, 239. https://doi.org/10.1016/0039-9140(76)80178-6
  17. Ahmed, M. S.; Mahadevappa, D. S. Talanta 1980, 27, 669. https://doi.org/10.1016/0039-9140(80)80207-4
  18. Akerloff, G. J. Am. Chem. Soc. 1932, 54, 4125. https://doi.org/10.1021/ja01350a001
  19. Bishop, E.; Jennings, V. J. Talanta 1959, 1, 197.
  20. Pryde, B. G.; Soper, F. G. J. Chem. Soc. 1962, 1582.
  21. Morris, J. C.; Salazar, J. A.; Wineman, M. A. J. Am. Chem. Soc. 1948, 70, 2036. https://doi.org/10.1021/ja01186a016
  22. Hardy, F. F.; Johnston, J. P. J. Chem. Soc. Perkin Trans II 1973, 742.
  23. Narayanan, S. S.; Rao, V. R. S. Radio Chim. Acta 1983, 32, 211.
  24. Subhashini, M.; Subramanian, M.; Rao, V. R. S. Talanta 1985, 32, 1082. https://doi.org/10.1016/0039-9140(85)80130-2
  25. Higuchi, T.; Ikeda, K.; Hussain, A. J. Chem. Soc. B 1967, 546. https://doi.org/10.1039/j29670000546
  26. Collins, C. J.; Bowman, N. S. Isotope Effects in Chemical Reactions; Van Nostrand Reinhold: New York, 1970; p 1267.
  27. Kohen, A.; Limbach, H. H. Isptope Effects in Chemistry and Biology; CRC Press: Florida, 2006; p 827.
  28. Moelwyn-Hughes, E. A. The Kinetics of Reaction in Solutions; Clarender Press: Oxford, 1947; p 374.
  29. Benson, S. W. The Foundations of Chemical Kinetics; McGraw-Hill: New York, 1960; p 19.
  30. Frost, A. A.; Pearson, R. G. Kinetics and Mechanism; Wiley: New York, 1961; p 135.
  31. Laidler, K. J. Chemical Kinetics; Tata Mc Graw-Hill: New York, 1965; p 211.
  32. Entelis, S. G.; Tiger, R. P. Reaction Kinetics in the Liquid Phase; Wiley: New York, 1976.
  33. Amis, E. S. Solvent Effects on Reaction Rates and Mechanisms; Academic Press: New York, 1966; p 1672.
  34. Laidler, K. J. Chemical Kinetics; Harper and Row Publishers: New York, 1987; p 219.

Cited by

  1. A macromolecular N-bromosulphonamide as a heterogeneous oxidant in acidic media vol.73, pp.7, 2016, https://doi.org/10.1007/s00289-015-1584-0
  2. Main characteristic of N-bromo poly(styrene-co-divinylbenzene) sulphonamide acid: a cation exchanger and redox polymer vol.74, pp.5, 2017, https://doi.org/10.1007/s00289-016-1808-y
  3. Mechanistic chemistry of oxidation of balsalazide with acidic chloramine-T and bromamine-T: A comparative spectrophotometric kinetic study vol.126, pp.6, 2012, https://doi.org/10.1007/s12039-014-0732-7
  4. Mechanistic Investigation of Osmium(VIII) Catalyzed Oxidation of Glutamic Acid With Sodium Salt of N-Chloro 4-Methylbenzenesulfonamide in Aqueous Media: A Practical Approach vol.46, pp.1, 2016, https://doi.org/10.1080/15533174.2013.872141