• Title/Summary/Keyword: Oxidation factor

Search Result 347, Processing Time 0.03 seconds

A Simulation Model for the protein Deposition of Pigs According to Amino Acid Composition of Feed Proteins (사료의 아미노산 조성에 따른 돼지의 단백질 축적을 나타내는 수치모델)

  • 이옥희;김강성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.178-190
    • /
    • 1999
  • This study was conducted to develop a simulation model for the growth dynamics of pigs and to describe quantitatively protein deposition depending on the amino acid composition of feed protein. In the model it is assumed that the essential processes that determine the utilization of feed protein in the whole body are protein synthesis, breakdown of protein, and oxidation of amino acid. Besides, it is also assumed that occurrence of protein deposition depends on genetic potential and amino acid composition of feed protein. The genetic potential for the protein deposition is the maximum capacity of protein synthesis, being dependent on the protein mass of the whole body. To describe the effect of amino acid composition of feed on the protein deposition, a factor, which consist of ten amino acid functions and lie between 0 and 1, is introduced. Accordingly a model was developed, which is described with 15 flux equations and 11 differential equations and is composed of two compartments. The model describes non linear structure of the protein utilization system of an organism, which is in non steady state. The objective function for the simulation was protein deposition(g/day) cal culated according to the empirical model, PAF(product of amino acid functions) of Menke. The mean of relative difference between the simulated protein deposition and PAF calculated values, lied in a range of 11.8%. The simulated protein synthesis and breakdown rates(g/day) in the whole body showed a parallel behavior in the course of growth.

  • PDF

Association Analysis between Genes' Variants for Regulating Mitochondrial Dynamics and Fasting Blood Glucose Level

  • Jung, Dongju;Jin, Hyun-Seok
    • Biomedical Science Letters
    • /
    • v.22 no.3
    • /
    • pp.107-114
    • /
    • 2016
  • Maintenance of fasting blood glucose levels is important for glucose homeostasis. Disruption of feedback mechanisms are a major reason for elevations of glucose level in blood, which is a risk factor for type 2 diabetes mellitus that is mainly caused by malfunction of pancreatic beta-cell and insulin. The fasting blood glucose level has been known to be influenced by genetic and environmental factors. Mitochondria have many functions for cell survival and death: glucose metabolism, fatty acid oxidation, ATP generation, reactive oxygen species (ROS) metabolism, calcium handling, and apoptosis regulation. In addition to these functions, mitochondria change their morphology dynamically in response to multiple signals resulting in fusion and fission. In this study, we aimed to examine association between fasting blood glucose levels and variants of the genes that are reported to have functions in mitochondrial dynamics, fusion and fission, using a cohort study. A total 416 SNPs from 36 mitochondrial dynamics genes were selected to analyze the quantitative association with fasting glucose level. Among the 416 SNPs, 4 SNPs of PRKACB, 13 SNPs of PPP3CA, 6 SNPs of PARK2, and 3 SNPs of GDAP1 were significantly associated. In this study, we were able to confirm an association of mitochondrial dynamics genes with glucose levels. To our knowledge our study is the first to identify specific SNPs related to fasting blood glucose level.

Antioxidant Activity of NADH and Its Analogue - An In Vitro Study

  • Olek, Robert Antoni;Ziolkowski, Wieslaw;Kaczor, Jan Jacek;Greci, Lucedio;Popinigis, Jerzy;Antosiewicz, Jedrzej
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.416-421
    • /
    • 2004
  • The antioxidant activities of NADH and of its analogue, 1,4-dihydro-2,6-dimethyl-3,5-dicarbethoxy-pyridine ($PyH_2$), were evaluated in vitro. NADH was found to be oxidized by the peroxyl radical derived from 2,2-azobis-(2-amidinopropane) dihydrochloride (AAPH) decomposition, in a pH-dependent manner. Both NADH and $PyH_2$ inhibited the peroxidation of egg yolk lecithin (EYL) liposomes, although $PyH_2$ was more effective than NADH when 2,2'-azobis-4-methoxy-2,4-dimethyl-valeronitrile (methoxy-AMVN) was employed to induce EYL liposome peroxidation. The antioxidant activities of NADH and $PyH_2$ were also evaluated by measuring their influences on 1,3-diphenylisobenzofuran (DPBF) fluorescence decay in the presence of peroxyl radicals. NADH and $PyH_2$ were much more effective at inhibiting DPBF quenching in Triton X-100 micelles than in liposomes. These results indicate that NADH can inhibit lipid peroxidation despite being hydrophilic. Nevertheless, membrane penetration is an important factor and limits its antioxidant activity.

Self-Aligned $n^+$ -pPolysilicon-Silicon Junction Structure Using the Recess Oxidation (Recess 산화를 이용한 자기정렬 $n^+$ -p 폴리실리콘-실리콘 접합구조)

  • 이종호;박영준;이종덕;허창수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.6
    • /
    • pp.38-48
    • /
    • 1993
  • A recessed n-p Juction diode with the self-aligned sturcture is proposed and fabricated by using the polysilicon as an n$^{+}$ diffusion source. The diode structure can be applicable to the emitter-base formation of high performance bipolar divice and the n$^{+}$ polysilicone mitter has an important effect on the device characteristics. The considered parameters for the polysilicon formation are the deposition condition. As$^{+}$ dose for the doping of the polysilicon and the annealing condition using RTP system. The vertical depth profiles of the fabricated diode are obtained by SIMS and the electrical characteristics are analyzed in terms of the ideality factor of diode (n), contact resistance and reverse leakage current. In addition, n$^{+}$-p junction diodes are formed by using the amorphous silicon (of combination of amorphous and polysiliocn) instead of polysilicon and their characteristics are compared with those of the standard sample. The As$^{+}$ dose for the formation of good junction is about 1~2${\times}10^{16}cm^{2}$ at given RTA conditions (1100.deg. C, 10sec).

  • PDF

An Unbalanced A.C. Bridge with High Voltage Source for the Conductometric Determination of Sulfur in Iron Ores (일정전류 비평행교류브릿지에 의한 전도도측정과 황의 정량)

  • Czae, Myung-Zoon;Choe, Gyu-Won
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.327-332
    • /
    • 1970
  • A simple and convenient device for deflection-type direct reading the variations in electrolytic conductance is described and applied to the analysis of sulfur by combustion-$H_2O_2$ oxidation method. The apparatus consisted of a high resistance-ratio bridge in which the other adjacent arms are the differential cells. By adopting unusually high a-c voltage source for the bridge excitation, the a-c method for unbalanced bridge is established, decreased sensitivity owing to reduced bridge factor, 0.01, is overcome and also the absolute sensitivity and linearity are greatly improved. Over 50% variations in impedance of the balanced cell, within 1% deviation from the linearity can be attained with a volt (rms)order of output which was detected directly with VTVM without further amplification. Analysis of the bridge shows that these useful features are natural result of the constant current character of the high source impedance generator and the performance of the device agreed with the theoretical predictions. A standard procedure for the rapid analysis of sulfur using the bridge is also given, the analytical accuracy was approximately 1%. A determination takes not more than 5 minutes.

  • PDF

Development of Reduced Normal Dodecane Chemical Kinetics (축소 노멀 도데케인 화학반응 메커니즘 개발)

  • Lee, Sangyul;Kim, Gyujin;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.37-44
    • /
    • 2013
  • Generally, a reduced chemical mechanism of n-heptane is used as chemical fuel of a 3-D diesel engine simulation because diesel fuel consists of hundreds of chemical components and various chemical classes so that it is very complex and large to use for the calculation. However, the importance of fuel in a 3-D simulation increases because detailed fuel characteristics are the key factor in the recent engine research such as homogeneous charged compression ignition engine. In this study, normal paraffin, iso paraffin and aromatics were selected to represent diesel characteristics and n-dodecane was used as a representative normal paraffin to describe the heavy molecular weight of diesel oil (C10~C20). Reduced kinetics of iso-octane and toluene which are representative species of iso paraffin and aromatics respectively were developed in the previous study. Some species were selected based on the sensitivity analysis and a mechanism was developed based on the general oxidation scheme. The ignition delay times, maximum pressure and temperature of the new reduced n-dodecane chemical mechanisms were well matched to the detailed mechanism data.

Suitability of Palm Based Oil as Dielectric Insulating Fluid in Transformers

  • Azis, Norhafiz;Jasni, Jasronita;Kadir, Mohd Zainal Abidin Ab;Mohtar, Mohd Nazim
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.662-669
    • /
    • 2014
  • Mineral oil has been widely used as dielectric insulating fluid in transformers due to its excellent performance in-service. However, there are few issues with mineral oil such as it has poor biodegradability and could contaminate the environment if a spillage occurs. With the increasing tight regulation on safety and environment, alternative fluids for mineral oil are currently being investigated and among the suitable candidate is the vegetable oil. There are different types of vegetable oils and one of them is the palm based oil. At the moment, extensive research works are carried out to examine its feasibility to be applied in transformers. This paper will review the previous research works that were carried out to examine the suitability of palm based oil as dielectric insulating fluid in transformers. The physical and chemical properties of palm based oil are studied based on viscosity, acidity, oxidation stability and flash point. Next, the electrical characteristics of palm based oil are examined based on AC breakdown voltage, relative permittivity, dissipation factor and partial discharge.

Numerical simulation of a regenerative thermal oxidizer for volatile organic compounds treatment

  • Hao, Xiaowen;Li, Ruixin;Wang, Jiao;Yang, Xinfei
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.397-405
    • /
    • 2018
  • As regulations governing the control of volatile organic compounds (VOCs) have become increasingly stringent in China, regenerative thermal oxidizers (RTOs) have been more frequently applied in medium- and high-concentration VOCs treatments. However, due to the lack of existing RTO-related research, experience remains a dominant factor for industrial application. This paper thus aimed to establish a model for industrial RTOs, using a transient simulation method and thermal equilibrium model to simulate the internal velocities and temperature distributions of an RTO across multiple cycles. A comparison showed an error of less than 5% between most correlating simulated and experimental measurement points, verifying that the simulation method was accurate. After verification, the velocity and temperature fields inside the RTO were simulated to study the uniformity of temperature and velocity within the packed beds: both fields displayed high uniformity after gas flowed through the honeycomb regenerator. The effects of air volume, VOCs concentrations, and valve switching times on the oxidation chamber temperature, RTO outlet temperature, and thermal efficiency (as well as their averages) were studied. The VOCs removal rate in this study was constantly above 98%, and the average thermal efficiency reached 90%.

Selective Homocysteine Assay with Cucurbit[7]uril by pH Regulation

  • Bae, Won-Bin;Kim, Hee-Joon;Jhee, Kwang-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.514-521
    • /
    • 2022
  • We report the effect of pH on the supramolecular complexation of two biothiols, viz., homocysteine (Hcy) and cysteine (Cys), with cucurbit[7]uril (CB[7]). Under basic pH conditions, Cys did not complex with CB[7], whereas Hcy efficiently complexed with CB[7], as confirmed by 1H NMR spectroscopy and Ellman's reagent (5,5'-dithio-bis(2-nitrobenzoic acid), DTNB) assay. 1H NMR and Raman spectroscopic studies revealed that, in the absence of CB[7], Hcy auto-oxidized slowly (~36 h) to homocystine (HSSH) under basic pH conditions. However, the rate of Hcy oxidation increased by up to 150 fold in the presence of CB[7], as suggested by the DTNB assay. Thus, supramolecular complexation under basic pH conditions led to the formation of a HSSH-CB[7] complex, and not Hcy-CB[7]. The results indicate that Hcy is rapidly oxidized to HSSH under the catalysis of CB[7], which acts as a reaction chamber, in basic pH conditions. Our studies suggest that Hcy concentration, a risk factor for cardiovascular disease, can be selectively and more easily quantified by supramolecular complexation with CB [7].

Antioxidation and anti-inflammatory effects of gamma-irradiated silk sericin and fibroin in H2O2-induced HaCaT Cell

  • Ji-Hye Choi;Sangmin Lee;Hye-Ju Han;Jungkee Kwon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.105-112
    • /
    • 2023
  • Oxidative stress in skin cells can induce the formation of reactive oxygen species (ROS), which are critical for pathogenic processes such as immunosuppression, inflammation, and skin aging. In this study, we confirmed improvements from gamma-irradiated silk sericin (I-sericin) and gamma-irradiated silk fibroin (I-fibroin) to skin cells damaged by oxidative stress. We found that I-sericin and I-fibroin effectively attenuated oxidative stress-induced ROS generation and decreased oxidative stress-induced inflammatory factors COX-2, iNOS, tumor necrosis factor-α, and interleukin-1β compared to the use of non-irradiated sericin or fibroin. I-sericin and Ifibroin effects were balanced by competition with skin regenerative protein factors reacting to oxidative stress. Taken together, our results indicated that, compared to non-irradiated sericin or fibroin, I-sericin, and I-fibroin had anti-oxidation and antiinflammation activity and protective effects against skin cell damage from oxidative stress. Therefore, gamma-irradiation may be useful in the development of cosmetics to maintain skin health.