Browse > Article
http://dx.doi.org/10.4014/jmb.2201.01016

Selective Homocysteine Assay with Cucurbit[7]uril by pH Regulation  

Bae, Won-Bin (Department of Applied Chemistry, Kumoh National Institute of Technology)
Kim, Hee-Joon (Department of Applied Chemistry, Kumoh National Institute of Technology)
Jhee, Kwang-Hwan (Department of Applied Chemistry, Kumoh National Institute of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.4, 2022 , pp. 514-521 More about this Journal
Abstract
We report the effect of pH on the supramolecular complexation of two biothiols, viz., homocysteine (Hcy) and cysteine (Cys), with cucurbit[7]uril (CB[7]). Under basic pH conditions, Cys did not complex with CB[7], whereas Hcy efficiently complexed with CB[7], as confirmed by 1H NMR spectroscopy and Ellman's reagent (5,5'-dithio-bis(2-nitrobenzoic acid), DTNB) assay. 1H NMR and Raman spectroscopic studies revealed that, in the absence of CB[7], Hcy auto-oxidized slowly (~36 h) to homocystine (HSSH) under basic pH conditions. However, the rate of Hcy oxidation increased by up to 150 fold in the presence of CB[7], as suggested by the DTNB assay. Thus, supramolecular complexation under basic pH conditions led to the formation of a HSSH-CB[7] complex, and not Hcy-CB[7]. The results indicate that Hcy is rapidly oxidized to HSSH under the catalysis of CB[7], which acts as a reaction chamber, in basic pH conditions. Our studies suggest that Hcy concentration, a risk factor for cardiovascular disease, can be selectively and more easily quantified by supramolecular complexation with CB [7].
Keywords
Homocysteine; cysteine; cucurbit[7]uril; homocystine; pH effect; supramolecular complexation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Iciek M, Chwatko G, Lorenc-Koci E, Bald E, Wlodek L. 2004. Plasma levels of total, free and protein bound thiols as well as sulfane sulfur in different age groups of rats. Acta Biochim. Pol. 51: 815-824.   DOI
2 Krasia TC, Steinke JH. 2002. Formation of oligotriazoles catalysed by cucurbituril. Chem. Commun. 7: 22-23.   DOI
3 Xu L, Fang G, Yu Y, Ma Y, Ye Z, Li Z. 2019. Molecular mechanism of heterogeneous supramolecular catalysis of metal-free cucurbituril solid for epoxide alcoholysis. Mol. Catal. 467: 1-8.   DOI
4 Mock WL, Shih NY. 1986. Structure and selectivity in host-guest complexes of cucurbituril. J. Org. Chem. 51: 4440-4446.   DOI
5 Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, Fakayode SO, et al. 2005. Detection of homocysteine and cysteine. J. Am. Chem. Soc. 127: 15949-15958.   DOI
6 Niu L-Y, Chen Y-Z, Zheng H-R, Wu L-Z, Tung C-H, Yang Q-Z. 2015. Design strategies of fluorescent probes for selective detection among biothiols. Chem. Soc. Rev. 44: 6143-6160.   DOI
7 Lee MJ, Shee NK, Son J-I, Karthikeyan S, Jhee K-H, Lee JY, et al. 2019. Supramolecular complexation of homocysteine and cysteine with cucurbit[7]uril. Supramol. Chem. 31: 369-376.   DOI
8 Barrow SJ, Kasera S, Rowland MJ, Del Barrio J, Scherman OA. 2015. Cucurbituril-based molecular recognition. Chem. Rev. 115: 12320-12406.   DOI
9 Freeman WA, Mock WL, Shih NY. 1981. Cucurbituril. J. Am. Chem. Soc. 103: 7367-7368.   DOI
10 Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X. 2012. Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2: 1213-1247.   DOI
11 Gao Z-Z, Lin R-L, Bai D, Tao Z, Liu J-X, Xiao X. 2017. Host-guest complexation of cucurbit[8]uril with two enantiomers. Sci. Rep. 7: 44717.   DOI
12 Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. 1998. Folate, Vitamin B12, and serum total homocysteine levels in confirmed alzheimer disease. Arch. Neurol. 55: 1449-1455.   DOI
13 Wood ZA, Schroder E, Robin Harris J, Poole LB. 2003. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32-40.   DOI
14 Nygard O, Vollset SE, Refsum H, Cappelen I, Tverdal A, Nordrehaug J, et al. 1995. Total plasma homocysteine and cardiovascular risk profile. The hordaland homocysteine study. JAMA 274: 1526-1533.   DOI
15 Page JH, Ma J, Chiuve SE, Stampfer MJ, Selhub J, Manson JE, et al. 2010. Plasma total cysteine and total homocysteine and risk of myocardial infarction in women: a prospective study. Am. Heart J. 159: 599-604.   DOI
16 Ahmed KA, Sawa T, Akaike T. 2011. Protein cysteine S-guanylation and electrophilic signal transduction by endogenous nitro-nucleotides. Amino Acids 41: 123-130.   DOI
17 Wieland M, Mieusset J-L, Brinker UH. 2012. Cucurbit [6] uril as a potential catalyst for the acidic decomposition of azidoaminoalkanes. Tetrahedron Lett. 53: 4351-4353.   DOI
18 Busschaert N, Caltagirone C, Van Rossom W, Gale PA. 2015. Applications of supramolecular anion recognition. Chem. Rev. 115: 8038-8155.   DOI
19 Urbach AR, Ramalingam V. 2011. Molecular recognition of amino acids, peptides, and proteins by Cucurbit[n]uril receptors. Isr. J. Chem. 51: 664-678.   DOI
20 Ueland PM, Refsum H, Beresford SA, Vollset SE. 2000. The controversy over homocysteine and cardiovascular risk. Am. J. Clin. Nutr. 72: 324-332.   DOI
21 Fan W, Huang X, Shi X, Wang Z, Lu Z, Fan C, et al. 2017. A simple fluorescent probe for sensing cysteine over homocysteine and glutathione based on PET. Spectrochim. Acta A Mol. Biomol. Spectrosc. 173: 918-923.   DOI
22 Yin G, Niu T, Yu T, Gan Y, Sun X, Yin P, et al. 2019. Simultaneous visualization of endogenous homocysteine, cysteine, glutathione, and their transformation through different fluorescence channels. Angew. Chem. Int. Ed. Engl. 58: 4557-4561.   DOI
23 Park S-H, Lee J-Y, Cho H-N, Kim K-R, Yang S-A, Kim H-J, et al. 2019. Simple and novel assay of the host-guest complexation of homocysteine with Cucurbit[7]uril. J. Microbiol. Biotechnol. 29: 114-126.   DOI
24 Inoue T, Kirchhoff JR. 2002. Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline quinone modified electrode. Anal. Chem. 74: 1349-1354.   DOI
25 Rusin O, St. Luce NN, Agbaria RA, Escobedo JO, Jiang S, Warner IM, et al. 2004. Visual detection of cysteine and homocysteine. J. Am. Chem. Soc. 126: 438-439.   DOI
26 Wang J, Liu Y, Jiang M, Li Y, Xia L, Wu P. 2018. Aldehyde-functionalized metal-organic frameworks for selective sensing of homocysteine over Cys, GSH and other natural amino acids. Chem. Commun. 54: 1004-1007.   DOI
27 Wang W, Li L, Liu S, Ma C, Zhang S. 2008. Determination of physiological thiols by electrochemical detection with piazselenole and its application in rat breast cancer cells 4T-1. J. Am. Chem. Soc. 130: 10846-10847.   DOI
28 Li J, Loh X. 2008. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv. Drug Del. Rev. 60: 1000-1017.   DOI
29 Biedermann F, Nau WM. 2014. Noncovalent chirality sensing ensembles for the detection and reaction monitoring of amino acids, peptides, proteins, and aromatic drugs. Angew. Chem. Int. Ed. Engl. 53: 5694-5699.   DOI