• 제목/요약/키워드: Oxidation efficiency

Search Result 952, Processing Time 0.025 seconds

Performance Improvement of Dielectric Barrier Plasma Reactor for Advanced Oxidation Process (고급산화공정용 유전체 장벽 플라즈마 반응기의 성능 개선)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.459-466
    • /
    • 2012
  • In order to improved treatment performance of dielectric barrier discharge (DBD) plasma, plasm + UV process and gas-liquid mixing method has been investigated. This study investigated the degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical). The basic DBD plasma reactor of this study consisted of a plasma reactor (consist of quartz dielectric tube, titanium discharge (inner) and ground (outer) electrode), air and power supply system. Improvement of plasma reactor was done by the combined basic plasma reactor with the UV process, adapt of gas-liquid mixer. The effect of UV power of plasma + UV process (0~10 W), gas-liquid mixing existence and type of mixer, air flow rate (1~6 L/min), range of diffuser pore size (16~$160{\mu}m$), water circulation rate (2.8~9.4 L/min) and UV power of improved plasma + UV process (0~10 W) were evaluated. The experimental results showed that RNO degradation of optimum plasma + UV process was 7.36% higher than that of the basic plasma reactor. It was observed that the RNO decomposition of gas-liquid mixing method was higher than that of the plasma + UV process. Performance for RNO degradation with gas-liquid mixing method lie in: gas-liquid mixing type > pump type > basic reactor. RNO degradation of improved reactor which is adapted gas-liquid mixer of diffuser type showed increase of 17.42% removal efficiency. The optimum air flow rate, range of diffuser pore size and water circulation rate for the RNO degradation at improved reactor system were 4 L/min, 40~$100{\mu}m$ and 6.9 L/min, respectively. Synergistic effect of gas-liquid mixing plasma + UV process was found to be insignificant.

Leaching Behavior of Vanadium and Possibility of Recovery of Valuable Metals from VTM Concentrate by Sulfuric Acid Leaching (바나듐함유 티탄철석 정광으로부터 황산 침출법에 의한 바나듐의 침출거동 및 유가금속의 회수가능성)

  • Joo, Sung-Ho;Shin, Dong Ju;Lee, Dongseok;Park, Jin-Tae;Jeon, Hoseok;Shin, Shun Myung
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.65-77
    • /
    • 2022
  • A study was conducted in Korea on the leaching behavior and possibility of recovery of vanadium and other valuable metals from domestic vanadium titanomagnetite (VTM) by direct acid leaching. In this study, a VTM concentrate containing 0.8% V2O5 was used, and the ratio of magnetite to ilmenite was calculated as 1.9:1 by using the HSC program. The leaching behavior of vanadium from the VTM was similar to that of iron, and it was affected by the concentration of sulfuric acid and temperature. Further, titanium could be leached in the form of TiOSO4 at a temperature higher than 75℃. To improve the leaching efficiency of V, Fe, and Ti in VTM, reductive sulfuric acid and oxidative sulfuric acid leaching were performed. When Na2SO3 was used as a reducing agent, the leaching rate of vanadium was 80% of that in that case of leaching by sulfuric acid. Similarly, the leaching rate of titanium increased from 20% to 50%. When Na2S2O8 was used as an oxidation agent, most of the vanadium was leached, and the main residue found by XRD analysis was ilmenite. In studies on the possibility of recovering valuable metals, the selective extraction of metals is hardly achieved by solvent extraction from oxidation leaching solutions; however, in this study, Cyanex 923, a solvation extractant from reductive leaching solutions, could selectively extract Ti.

Determination of Efficient Operating Condition of UV/H2O2 Process Using the OH Radical Scavenging Factor (수산화라디칼 소모인자를 이용한 자외선/과산화수소공정의 효율적인 운전 조건도출)

  • Kim, Seonbaek;Kwon, Minhwan;Yoon, Yeojoon;Jung, Youmi;Hwang, Tae-Mun;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.534-541
    • /
    • 2014
  • This study investigated a method to determine an efficient operating condition for the $UV/H_2O_2$ process. The OH radical scavenging factor is the most important factor to predict the removal efficiency of the target compound and determine the operating condition of the $UV/H_2O_2$ process. To rapidly and simply measure the scavenging factor, Rhodamine B (RhB) was selected as a probe compound. Its reliability was verified by comparing it with a typical probe compound (para-chlorobenzoic acid, pCBA); the difference between RhB and pCBA was only 1.1%. In a prediction test for the removal of Ibuprofen, the RhB method also shows a high reliability with an error rate of about 5% between the experimental result and the model prediction using the measured scavenging factor. In the monitoring result, the scavenging factor in the influent water of the $UV/H_2O_2$ pilot plant was changed up to 200% for about 8 months, suggesting that the required UV dose could be increased about 1.7 times to achieve 90% caffeine removal. These results show the importance of the scavenging factor measurement in the $UV/H_2O_2$ process, and the operating condition could simply be determined from the scavenging factor, absorbance, and information pertaining to the target compound.

Removing High Concentration Organic Matters by Using Electrolysis (전기분해에 의한 고농도 유기물질 제거 특성)

  • Gil, Dae-Soo;Lee, Byung-Hun;Lee, Jea-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.251-264
    • /
    • 2000
  • Organic removal from synthetic wastewater by electrochemical methods was investigated with various operating parameters, such as current density, retention time, electrode gap and $Cl^-/COD_{Cr}$ ratio. In electrolysis, dioxide iridium coated titanium ($IrO_2/Ti$) and stainless steel plate were used for anode and cathode respectively. The $COD_{Cr}$ removal efficiencies between plate type anode and net type anode were about same effect, but electrolytic power using net type anode is low than plate type anode. The $Cl^-/COD_{Cr}$ ratio was about $1.3kgCl^-/kgCOD_{Cr}$ when organic removal obtained 70 %, $Cl^-/COD_{Cr}$ ratio needs $2.2kgCl^-/kgCOD_{Cr}$ so as to organic completely remove. The removal efficiency of organics increased with current density, retention time and $Cl^-/COD_{Cr}$ ratio, but decreased with increasing electrode gap. The relationship of operating conditions and $COD_{Cr}$ removal efficiencies are as follows. $$COD_{Cr}(%)=80.0360(Current\;density)^{0.4451}{\times}(HRT)^{0.8102}{\times}(Gap)^{-0.4915}{\times}(Cl^-/COD_{Cr})^{0.5805}$$ There existed a competition between the removals for $COD_{Cr}$ and ammonium during electrolysis, the removal of ammonium was shown to be dominant and $COD_{Cr}$ removal was low. But $COD_{Cr}$ removal was raised as addition of alkalinity.

  • PDF

Design of the self-oscillation UV flash lamp power supply and the characteristic of its operation using self-resonance of the transformer (트랜스포머의 자가 공진(Self-Resonance)특성을 이용한 자가 발진(Self-Oscillation) UV(Ultra Violet) 발생 플래시램프 전원장치설계 및 그 동작 특성)

  • Kim, Shin-Hyo;Cho, Dae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.48-55
    • /
    • 2014
  • These Xenon flashlamp power supply for Ultra Violet has converter with high voltage conversion ratio. General model is composed of transformer with high voltage conversion ratio and voltage doubler rectifier circuit. Purpose of power supply leads dielectric breakdown of Xenon flashlamp and passes current rapidly. When passing current, it has to limit current to avoid over-heat, damage of electrode and acceleration of gas oxidation which are cause of performance degradation of lamps. Generally, inductors and resistors, which are called as "Ballast," are used to limit currents. Generally, Transformer has high turn ratio to make high voltages. But we can get high voltages using the transformer with low turn ratio which is driven with self resonance. Also, an advantage of self resonance is to make a circuit simply through impedance of transformer in resonance frequency which filters output voltage. As using an unique impedance of transformer, the circuit does not need other impedance elements like the ballast. So the power supply assures high efficiency of the arc discharge.

Analyzing Operational Efficiency of GTL Reforming Process by using Aspen Plus (Aspen Plus를 이용한 GTL Reforming 공정별 운전효율 비교)

  • Bae, Jihan;Kim, Yongheon;Kim, Jaeho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.143-143
    • /
    • 2010
  • GTL(Gas-to-Liquids)공정 중 합성가스 제조공정(Reforming Process)인 ATR(Auto-Thermal Reforming), SCR(Steam Carbon Reforming), POx(Partial Oxidation)의 시뮬레이션 연구를 수행하였다. Reforming 공정에서 생산된 합성가스는 GTL 합성유 제조공정인 FT(Fischer-Thropsch) 반응기로 주입되며, 합성유 생산에 최적의 효율을 보이는 H2/CO 비(합성가스에 포함된 반응물비)는 2.0으로 알려져 있다. FT공정은 합성가스를 원료로 고온 및 고압 반응을 거쳐 GTL 공정의 최종 생산품인 FT합성유를 제조하는 공정이다. 본 연구에서는 FT공정 효율 극대화를 위해 reforming 공정에서 생성되는 합성가스 내 H2/CO의 비를 2로 수렴토록 모사조건을 설정하였으며, 상기 조건을 만족하는 reforming 공정들의 운전 온도 및 feed 조성을 분석하고 비교하고자 한다. 현재 GTL 플랜트관련 산업계에 적용 혹은 주 연구대상인 reforming 공정으로는 ATR, SCR, POx 공정이 있다. ATR 공정은 $850{\sim}1100^{\circ}C$에서 메탄, 스팀 및 산소를 원료로 활용하여 H2 및 CO를 생산하는 공정으로 발열/흡열 반응이 상존하여 에너지 비용이 낮지만 공정구조 상 열회수설비 및 ASU(Air Separation Unit)이 필요하기에 CAPEX(초기설비 설치비용)가 높은 편이다. SCR공정은 CH4, Steam 및 CO2를 연료로 하기에 이산화탄소가 일정부분 포함된 가스전에도 적용이 가능하나 공정 운전 중 지속적으로 외부에서 열을 공급해야 하기에 에너지 투입비용이 높은편이며, 탄소침적의 문제가 있어 대용량 플랜트에는 적합하지 않다. POx공정은 약 $1,500^{\circ}C$의 고온에서 CH4가 O2에 의해 부분 산화되는 방식으로 촉매가 필요없어 설비비가 타 공정에 비해 저렴하나 생산가스의 H2/CO비가 다소 낮아 전체적인 GTL 공정효율이 저하되는 단점이 있다. 상기 세 공정은 GTL 산업계에서 실증 및 효율증대를 위해 주로 연구되는 공정이기에 본 연구의 분석대상으로 설정하였다. 본 연구에서는 상용공정모사기인 Aspen Plus를 활용하여 reforming 공정별로 FT합성공정의 최적 조건(H2/CO=2)을 만족하는 합성가스 생산조건 분석 및 비교를 수행할 예정이다. 운전조건인 공정 운전온도 및 feed 가스조성 등을 모사하기 위해 합성가스 reforming 공정을 모델링하고 공급유량 및 압력 등의 운전변수는 GTL국책과제 1단계 연구수행 결과를 토대로 선정하고자 한다. GTL공정의 경우, 설비의 운전조건이나 연료가스의 구성 및 유량에 따라 적합한 reforming 공정이 다르기에 본 시뮬레이션 결과를 향후 GTL 플랜트 공정모델 설계시 reforming 공정선정에 참고자료로 활용하고자 한다.

  • PDF

Lactobacillus plantarum (KACC 92189) as a Potential Probiotic Starter Culture for Quality Improvement of Fermented Sausages

  • Ba, Hoa Van;Seo, Hyun-Woo;Seong, Pil-Nam;Kang, Sun-Moon;Kim, Yoon-Seok;Cho, Soo-Hyun;Park, Beom-Young;Ham, Jun-Sang;Kim, Jin-Hyoung
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.189-202
    • /
    • 2018
  • This study was conducted to evaluate the effects of fermenting temperature on the applicability of Lactobacillus plantarum for production of fermented sausages as starter cultures, and its applicable efficiency was also compared with those inoculated with commercial starter culture or non-inoculated control. The L. plantarum isolated from a naturally-fermented meat, identified by 16S rDNA sequencing and again identified by de novo Assembly Analysis method was used as a starter culture. Six treatments: 3 with L. plantarum at different fermenting temperatures (20, 25 and $30^{\circ}C$), and other 3 treatments (1 with commercial starter culture, 1 with its mixture with L. plantarum and 1 non-inoculated control) fermented under the same conditions ($25^{\circ}C$) were prepared. Results revealed that the fermenting temperature considerably affected the pH change in samples added with L. plantarum; the highest pH drop rate (1.57 unit) was obtained on the samples fermented at $30^{\circ}C$, followed by those at $25^{\circ}C$ (1.3 unit) and $20^{\circ}C$ (0.99 unit) after 4 days fermentation. Increasing the temperature up to $30^{\circ}C$ resulted in significantly lower spoilage bacteria count (5.15 log CFU/g) and lipid oxidation level in the products inoculated with L. plantarum. The sensory analysis also showed that the samples added with L. plantarum at $30^{\circ}C$ had significantly higher odor, taste and acceptability scores than those fermented at lower temperatures. Under the same processing condition, although the L. plantarum showed slightly lower acidification than the commercial starter culture, however, it significantly improved the eating quality of the product.

Quality Characterization of Salmon Oil Microencapsulated with Various Wall Materials (다양한 피복물질을 이용한 연어 오일의 미세캡슐화 및 품질 특성)

  • LIM, Hyun-Jung;PARK, Seul-Ki;KIM, Min-Jeong;LEE, Won-Kyung;MIN, Jin-Ki;CHO, Young-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1334-1342
    • /
    • 2015
  • The aim of this study was to investigate the quality characterization of salmon oil microencapsulated with maltodextrin (MD), cyclodextrin (CD), sodium caseinate (SC), arabic gum (AG) and WPI. After spray drying to ambient temperature, the salmon oil powders were packed (single package) and placed at room temperature ($25^{\circ}C$) for 30 day. The quality characterization of salmon oil powder including total oil (%), extractable oil (%), encapsulation efficiency (%), fatty acid, SEM, pH, acid value (AV), peroxide value(POV) were investigated. Salmon oil was microencapsulated with a high power yield (> 80%); including the formulation MD/SC and MD/SC/WPI. The microencapsules of MD/SC/WPI presented spherical shapes, smooth texture and non-porous surfaces. The pH of MD/SC/WPI varied from 6.11 to 5.99 (p>0.05). The AV of MD/SC/WPI varied from 4.74 to 4.61 (p>0.05). The pH and AV were not significantly different. The POV of MD/SC/WPI increased with storage day (p<0.05). It was concluded that MD/SC/WPI could delay lipid oxidation and high yield (82.55%) of salmon oil powder.

Extension of Low Temperature Combustion Regime by Turbocharging Using Diesel and Biodiesel Fuels (과급에 의한 디젤 및 바이오디젤의 저온연소 운전영역 확장에 관한 연구)

  • Jang, Jae-Hoon;Oh, Seung-Mook;Lee, Yong-Gyu;Lee, Sun-Youp
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1065-1072
    • /
    • 2012
  • Due to its oxygen (O) content, biodiesel (BD) is advantageous in that it lowers PM emissions in CI engines. Therefore, BD is considered one of the best candidates for low temperature combustion (LTC) operation because its use can extend the regime for simultaneous reduction of PM and $NO_x$. Thus, in this study, LTC operation was realized using BD and diesel with a 5~7% $O_2$ fraction. Engine test results show that the use of BD increased the efficiency and reduced emissions such as PM, THC, and CO; furthermore, IMEP reduced by 10~12% owing to the lower LHV of the fuel. In particular, smoke was suppressed by up to 90% because O atoms in the BD enhanced the soot oxidation reaction. To compensate the IMEP loss, turbocharging (TC) was then tested, and the results showed that the power output increased and PM was reduced further. Moreover, TC in BD engine operation allowed a similar level of reduction in both $NO_x$ and PM at 11~12% $O_2$ fraction, suggesting that there is a potential to widen the operating range by the combination of TC and BD.

Enhanced total phosphorus removal using a novel membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation (유입흐름 변경 및 전응집 기반 이단응집 제어 적용 MBR을 통한 총인처리 개선 연구)

  • Cha, Jaehwan;Shin, Kyung-Suk;Park, Seung-Kook;Shin, Jung-Hun;Kim, Byung-Goon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.103-114
    • /
    • 2017
  • A membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation was evaluated in terms of phosphorus removal efficiency and cost-savings. The MBR consisted of two identical alternative reaction tanks, followed by aerobic, anoxic and membrane tanks, where the wastewater and the internal return sludge alternatively flowed into each alternative reaction tank at every 2 hours. In the batch-operated alternative reaction tank, the initial concentration of nitrate rapidly decreased from 2.3 to 0.4 mg/L for only 20 minutes after stopping the inflow, followed by substantial release of phosphorus up to 4 mg/L under anaerobic condition. Jar test showed that the minimum alum doses to reduce the initial $PO_4$-P below 0.2 mg/L were 2 and 9 mol-Al/mol-P in the wastewater and the activated sludge from the membrane tank, respectively. It implies that a pre-coagulation in influent is more cost-efficient for phosphorus removal than the coagulation in the bioreactor. On the result of NUR test, there were little difference in terms of denitrification rate and contents of readily biodegradable COD between raw wastewater and pre-coagulated wastewater. When adding alum into the aerobic tank, alum doses above 26 mg/L as $Al_2O_3$ caused inhibitory effects on ammonia oxidation. Using the two-stage coagulation control based on pre-coagulation, the P concentration in the MBR effluent was kept below 0.2 mg/L with the alum of 2.7 mg/L as $Al_2O_3$, which was much lower than 5.1~7.4 mg/L as $Al_2O_3$ required for typical wastewater treatment plants. During the long-term operation of MBR, there was no change of the TMP increase rate before and after alum addition.