• 제목/요약/키워드: Oxidation efficiency

검색결과 952건 처리시간 0.024초

초음파 합성 적용 Cu2O/TiO2 이종접합 소재의 특성 및 활성도 평가에 관한 연구 (Study on the Photocatalytic Characteristic and Activity of Cu2O/TiO2 Heterojunction Prepared by Ultrasonification)

  • 최정학;이준엽
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1213-1222
    • /
    • 2020
  • In the current study, a Cu2O/TiO2 photoinduced nanocomposite materials prepared by ultrasonification method was evaluated the photocatalytic oxidation efficiency of volatile organic compounds (BTEX) under visible-light irradiation. The results of XRD confirmed the successful preparation of photoinduced nanocomposite materials. However, diffraction peaks belonging to TiO2 were not confirmed for the Cu2O/TiO2. The possible reason for the absence of Cu2O peak is their low content and small particle size. The result of uv-vis spectra exhibited that the fabricated Cu2O/TiO2 can be activated under visible light irradiation. The FE-SEM/EDS and TEM showed the formation of synthesized nanocomposites and componential analysis in the undoped TiO2 and Cu2O/TiO2. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with Cu2O/TiO2 were higher than undoped TiO2. According to light sources, the average oxidation efficiencies for BTEX by Cu2OT-0.5 were exhibited in the orer of 8 W day light > violet LEDs > white LEDs. However, the photocatalytic oxidation efficiencies normalized to supplied electric power were calculated to be in the following order of violet LEDs > white LEDs > 8 W day light, indicating that the LEDs could be a much more energy efficient light source for the photo-oxidation of gaseous BTEX using Cu2O/TiO2.

디젤자동차용 산화촉매의 성능 평가 (Performance Evaluation of Diesel Oxidation Catalysts for Diesel Vehicles)

  • 최병철;박희주;정명근
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.59-64
    • /
    • 2003
  • Recently, as people pay attention to the environmental pollution, the emissions of diesel engine have been a serious problem. We carried out the performance evaluation test of Diesel Oxidation Catalysts (DOC) for HSDI diesel engine equipped vehicles. The DOC, basically coated with Pt catalyst, was manufactured with various washcoat materials. It was found that CO conversion efficiency depends on temperature, but THC conversion efficiency is dominated by temperature and space velocity. The THC and CO conversion efficiencies of aged catalysts were increased with additions of $ZrO_2$ and zeolite B in the washcoat. We found that DOC performance changes with coating techniques, even through it has same washcoat materials. The DOC coated by high temperature washcoat coating technology showed good conversion efficiency than low temperature washcoat coated DOC.

전기화학적 합성 Ferrate(VI)를 이용한 수중 Trichloroethylene 분해특성 연구 (Degradation of Trichloroethylene in Aqueous Phase by Electrochemical Ferrate(VI))

  • 남주희;권병혁;김일규
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.453-461
    • /
    • 2012
  • The degradation characteristics of TCE by Ferrate(VI) oxidation have been studied. Ferrate(VI) were prepared by electrochemical method. The degradation efficiency of TCE in aqueous solution was investigated at various pH values, Ferrate(VI) doses and aqueous solution temperature values. GC-ECD was used to analyze TCE. TCE was degraded rapidly by ferrate(VI) in aqueous solution, Also, the experimental results showed that TCE removal efficiency increased with the increase of Ferrate(VI) doses. The effect of pH was investigated and the maximum degradation efficiency was obtained at pH 7. And intermediate products were identified by GC-MS techniques. Ethyl Chloride, Dichloroethylene, Chloroform, 1,1-dichloropropene, Trichloroacetic acid and Trichloroethane were identified as a reaction intermediate, and $Cl^-$ was identified as an end product.

Potassium Ferrate(VI)를 이용한 Benzothiophene 분해특성 연구 (Degradation of Benzothiophene by Potassium Ferrate(VI))

  • 이권철;김일규
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.643-649
    • /
    • 2011
  • Degradation of benzothiophene(BT) in the aqueous phase by potassium ferrate(VI) was investigated. Potassium ferrate(VI) was prepared by the wet oxidation method. The degradation efficiency of BT was measured at various values of pH, ferrate(VI) dosage and initial concentration of BT. BT was degraded rapidly within 30 seconds by ferrate(VI). While the highest degradation efficiency was achieved at pH 5, the lowest degradation efficiency was achieved at pH 9. Also, the initial rate constant of BT increased with decreasing of the BT initial concentration. In addition, the intermediate analysis for the reaction of BT and ferrate(VI) has been conducted using GC-MS. Benzene, styrene, benzaldehyde, formaldehyde, benzoic acid, formic acid, and acetic acid were identified as reaction intermediates, and ${SO_4}^{2-}$ was identified as an end product.

Evaluation of electrical energy consumption in UV/H2O2 advanced oxidation process for simultaneous removal of NO and SO2

  • Shahrestani, Masoumeh Moheb;Rahimi, Amir
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.389-396
    • /
    • 2019
  • The electrical energy consumption (EEC) in removal of NO by a $UV/H_2O_2$ oxidation process was introduced and related to removal efficiency of this gas. The absorption-reaction of NO was conducted in a bubble column reactor in the presence of $SO_2$. The variation in NO removal efficiency was investigated for various process parameters including NO and $SO_2$ inlet concentrations, initial concentration of $H_2O_2$ solution and gas flow rate. EEC values were obtained in these different conditions. The removal efficiency was increased from about 22% to 54.7% when $H_2O_2$ concentration increased from 0.1 to 1.5 M, while EEC decreased by about 70%. However, further increase in $H_2O_2$ concentration, from 1.5 to 2, had no significant effect on NO absorption and EEC. An increase in NO inlet concentration, from 200 to 500 ppm, decreased its removal efficiency by about 10%. However, EEC increased from $2.9{\times}10^{-2}$ to $3.9{\times}10^{-2}kWh/m^3$. Results also revealed that the presence of $SO_2$ had negative effect on NO removal percentage and EEC values. Some experiments were conducted to investigate the effect of $H_2O_2$ solution pH. The changing of pH of oxidation-absorption medium in the ranges between 3 to 10, had positive and negative effects on removal efficiency depending on pH value.

오존 산화에 의해 형성된 터널 실리콘 산화막의 표면 패시베이션 (Surface Passivation of Tunnel Silicon Oxide Grown by Ozone Oxidation)

  • 백종훈;조영준;장효식
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.341-344
    • /
    • 2018
  • In order to achieve a high efficiency for the silicon solar cell, a passivation characteristic that minimizes the electrical loss at a silicon interface is required. In this paper, we evaluated the applicability of the oxide film formed by ozone for the tunnel silicon oxide film. To this end, we fabricated the silicon oxide film by changing the condition of ozone oxidation and compared the characteristics with the oxide film formed by the existing nitric acid solution. The ozone oxidation was formed in the temperature range of $300{\sim}500^{\circ}C$ at an ozone concentration of 17.5 wt%, and the passivation characteristics were compared. Compared to the silicon oxide film formed by nitric acid oxidation, implied open circuit voltage (iVoc) was improved by ~20 mV in the ozone oxidation and the ozone oxidation after the nitric acid pretreatment was improved by ~30 mV.

상수처리에서 염소 및 오존산화를 이용한 색도제거 (Chromaticity removal by chlorine and ozone oxidation in water treatment)

  • 이정훈;김진근
    • 상하수도학회지
    • /
    • 제31권4호
    • /
    • pp.273-279
    • /
    • 2017
  • Optimal processes to remove chromaticity at E water treatment plant(WTP) mainly caused by algae of E lake in Jeju island were investigated based on lab-tests of chlorine and ozone oxidation. 42.9% of chromaticity of filtered water was removed by chlorine oxidation under pH 7.0~8.0, dose of 1.0 mg/L with contact time of 30~60 min. On the other hand, chromaticity removal was 71.4% when post-ozone dose of 0.9~1.9 mg/L and pH 9.0, while it was increased to 86.7% under post-ozone dose of 3.1~7.3 mg/L and pH 9.0. However, there was no significant chromaticity removal efficiency increase when ozone doses were higher than 5.0 mg/L regardless of feeding point(i.e., pre-ozonation and post-ozonation) and pHs(i.e., 7.0 and 9.0.) under the experimental conditions. Based on the results, chlorine oxidation using existing chlorination facilities at the WTP is recommended for lower chromaticity while ozone oxidation is recommended for higher chromaticity by installing new ozone feeding facilities.

담체에 따른 Pt 촉매의 NOx, soot 동시 반응특성과 열충격에 관한 연구 (A Study of Simultaneous Reaction for NOx, Soot and Thermal Shock according to Pt Catalyst's Supports)

  • 김성수;박광희;배세현;홍성창
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.437-442
    • /
    • 2009
  • $TiO_2$, $Al_2O_3$를 담체로 한 Pt계 촉매에서 NOx, soot의 동시 제거 반응과 촉매의 열충격에 대한 연구를 수행하였다. 실험은 NOx와 soot의 반응을 독립 또는 동시에 반응시킨 조건으로 수행하였으며 그 결과 담체의 종류 및 상에 따라서 서로 상이한 NOx 제거능력과 soot 산화력을 나타내었고, soot의 산화시작온도의 결정은 NOx 제거능력과 상관관계가 있었다. NOx, soot의 동시 반응 시에는 생성된 $NO_2$에 의하여 soot 산화시작온도가 저온으로 이동하였다. 또한 열충격에 대한 NOx 제거율은 Pt/$Al_2O_3$ 촉매가 Pt/$TiO_2$ 촉매에 비하여 효율저하가 적게 일어났으며 soot 산화력은 활성점인 Pt의 소결현상에 의하여 촉매에 관계없이 모두 감소하였다.

수소-CNG 혼소연료 차량에서의 메탄 저감을 위한 산화촉매에 관한 연구 (Studies of Methane Oxidation Catalyst on H2-CNG Mixed Fuel Vehicles)

  • 이웅재;심경실;양재춘;김태민
    • 한국가스학회지
    • /
    • 제17권5호
    • /
    • pp.22-27
    • /
    • 2013
  • 수소와 CNG를 혼합한 HCNG는 CNG에 비해 연소효율이 높고 보다 친환경적인 연료로 CNG 엔진의 다음 단계의 엔진으로 각광받고 있으며, 수소시대로의 가교역할을 할 것이라 전망된다. 2014년 EURO-6의 도입으로 CNG 및 HCNG 차량에서 발생되는 메탄가스에 대해서도 규제가 이루어질 전망이다. 본 연구에서는 HCNG 엔진의 배기가스 중 메탄가스를 저감하기 위한 메탄산화촉매를 다루었다. 메탄산화촉매의 장시간 운전에 따른 내구성 및 메탄산화 양상 등에 대해 연구했으며, 이 때 촉매의 화학적인 현상을 분석하기 위해 촉매의 중요한 인자인 귀금속 분산도, 비표면적 변화 등을 촉매 활성과 연계하여 연구하였다.

유기성 영양분 첨가 및 화학적 산화 연계를 통한 유류오염 토양의 생물학적 정화효율 향상에 관한 연구 (Enhancement of Biodegradation Rate of Petroleum Hydrocarbons-contaminated Soil with Addition of Organic Composite Nutrients and a Chemical Oxidation)

  • 김국진;오승택;이철효;서상기;강창환;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제13권3호
    • /
    • pp.59-66
    • /
    • 2008
  • 본 연구는 유류화합물로 오염된 토양의 생물학적 정화효율을 향상시키기 위한 연구로서, 정화목표인 TPH 500 mg/kg을 달성하기 위하여 유기성 영양분과 화학적 산화를 추가적으로 연계 적용하여 생물학적 정화효율의 성능향상 시험을 수행하였다. 경유로 오염된 토양을 대상으로 시험한 결과, 생물학적으로 정화하는 과정에서 무기성 성분(N, P)을 영양분으로 사용하여 정화한 경우에서 보다(정화효율 80.2%) 유기성 영향분인 퇴비와 액분을 사용한 경우가 각각 84.4%, 92.2%로 높은 정화효율을 보여주었다. 난분해성 물질을 함유한 토양의 생물학적 정화과정에서 tailing 현상이 일어나는 기간에 화학적 산화와 생물학적 정화를 병행하였을 때 TPH 농도를 134 mg/kg로 떨어뜨려 정화효율 98.1%를 얻은 반면에 생물학적 정화만 진행한 경우 TPH 1,073 mg/kg로 정화효율 84.7%를 나타내 화학적 산화의 병행처리가 더 효과적임을 알 수 있었다.