Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.5.341

Surface Passivation of Tunnel Silicon Oxide Grown by Ozone Oxidation  

Baek, Jong Hoon (Graduate School of Energy Science and Technology, Chungnam National University)
Cho, Young Joon (Graduate School of Energy Science and Technology, Chungnam National University)
Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.5, 2018 , pp. 341-344 More about this Journal
Abstract
In order to achieve a high efficiency for the silicon solar cell, a passivation characteristic that minimizes the electrical loss at a silicon interface is required. In this paper, we evaluated the applicability of the oxide film formed by ozone for the tunnel silicon oxide film. To this end, we fabricated the silicon oxide film by changing the condition of ozone oxidation and compared the characteristics with the oxide film formed by the existing nitric acid solution. The ozone oxidation was formed in the temperature range of $300{\sim}500^{\circ}C$ at an ozone concentration of 17.5 wt%, and the passivation characteristics were compared. Compared to the silicon oxide film formed by nitric acid oxidation, implied open circuit voltage (iVoc) was improved by ~20 mV in the ozone oxidation and the ozone oxidation after the nitric acid pretreatment was improved by ~30 mV.
Keywords
Silicon oxide; Ozone oxidation; Passivation; TOPCon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. G. Aberle, Prog. Photovoltaics, 8, 473 (2000). [DOI: https:// doi.org/10.1002/1099-159X(200009/10)8:5<473::AID-PIP337> 3.0.CO;2-D]   DOI
2 M. A. Green, Prog. Photovoltaics: Process. Res. Appl., 17, 183 (2009). [DOI: https://doi.org/10.1002/pip.892]   DOI
3 T. Matsumoto, R. Hirose, F. Shibata, D. Ishibashi, S. Ogawara, and H. Kobayashi, Sol. Energy Mater. Sol. Cells, 134, 298 (2015). [DOI: https://doi.org/10.1016/j.solmat.2014.11.040]   DOI
4 S. D. Wolf, G. Agostinelli, G. Beaucarne, and P. Vitanov, J. Appl. Phys., 97, 063303 (2005). [DOI: https://doi.org/10.1063/ 1.1861138]   DOI
5 R. Hezel and K. Jaeger, J. Electrochem. Soc., 136, 518 (1989). [DOI: https://doi.org/10.1149/1.2096673]   DOI
6 G. Dingemans, M.C.M. van de Sanden, and W.M.M. Kessels, Electrochem. Solid-State Lett., 13, H76 (2010). [DOI: https:// doi.org/10.1149/1.3276040]   DOI
7 B. Hoex, J.J.H. Gielis, M.C.M. van de Sanden, and W.M.M. Kessels, J. Appl. Phys., 104, 113703 (2008). [DOI: https:// doi.org/10.1063/1.3021091]   DOI
8 F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, Sol. Energy Mater. Sol. Cells, 120, 270 (2014). [DOI: https://doi.org/10.1016/j.solmat.2013.09.017]   DOI
9 A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, and S. W. Glunz, Sol. Energy Mater. Sol. Cells, 173, 96 (2017). [DOI: https://doi.org/10.1016/j.solmat.2017.05.042]   DOI
10 W. Kern and D. A. Puotinen, RCA Rev., 31, 187 (1970).
11 J. Shewchun, R. Singh, and M. A. Green, J. Appl. Phys., 48, 765 (1977). [DOI: https://doi.org/10.1063/1.323667]   DOI
12 N. Awaji, Y. Sugita, T. Nakanishi, S. Ohkubo, K. Takasaki, and S. Komiya, J. Vac. Sci. Technol. A, 14, 971 (1996). [DOI: https://doi.org/10.1116/1.580424]   DOI
13 D. K. Schroder, Semiconductor Material and Device Characterization 3rd ed. (John Wiley & Sons, Inc., New Jersey, 2006) p. 319.
14 A. Moldovan, F. Feldmann, M. Zimmer, J. Rentsch, J. Benick, and M. Hermle, Sol. Energy Mater. Sol. Cells, 142, 123 (2015). [DOI: https://doi.org/10.1016/j.solmat.2015.06.048]   DOI