• Title/Summary/Keyword: Oxidation efficiency

검색결과 954건 처리시간 0.023초

A Study on Enhancement of Np Extraction by TBP Through the Electrochemical Adjustment of Np Oxidation State by Using a Glassy Carbon Fiber Column Electrode

  • Kim, Kwang-Wook;Song, Kee-Chan;Lee, Eil-Hee;Park, In-Kyu;Yoo, Jae-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.309-315
    • /
    • 2000
  • The changes of Np oxidation state in nitric acid and the effect of nitrous acid on the oxidation state were analyzed by spectrophotometry, solvent extraction, and electrochemical methods. An enhancement of Np extraction to 30 vol.% TBP was carried out through adjustment of Np oxidation state by using a glassy carbon fiber column electrode system. The information of electrolytic behavior of nitric acid was important because the nitrous acid affecting the Np redox reaction was generated during the electrolytic adjustment of the Np oxidation state. The Np solution used in this work consisted of Np(V) and Np(Ⅵ)without (IV). The composition of Np(V) in the range of 0.5M -5.5 M nitric acid was 32% ~ 19%. The electrolytic oxidation of Np(V) to Np(Ⅵ)in the solution enhanced Np extraction efficiency about five times higher than the case without the electrolytic oxidation. It was confirmed that the nitrous acid of less than about 10-5 M acted as a catalyst to accelerate the chemical oxidation reaction of Np(V) to Np(Ⅵ).

  • PDF

수소화물에 의한 Zr 합금의 고온산화 가속효과 (Hydrogen Effect on the Oxidation of Zr-Alloy Claddings under High Temperature)

  • 정윤목;하성우;박광헌
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.389-394
    • /
    • 2016
  • The operation method of nuclear power plants is currently changing to high burn-up and long period that can enhance economics and efficiency of the plant. Since nuclear plant operation environment has been becoming severe, the amount of absorbed hydrogen also has increased. Absorbed hydrogen can be fatal securing safety of nuclear fuel cladding in case of Loss of Coolant Accidents(LOCA). In order to examine the impact of hydride on high-temperature oxidation, high-temperature oxidation experiment was performed on normal Zry-4 cladding and on Zry-4 cladding where hydrogen is charged in air pressure steam atmosphere under the $950^{\circ}C$ and $1000^{\circ}C$. According to the results, while oxidation acceleration due to charged hydrogen was not observed prior to breakaway oxidation creation, oxidation began to accelerate in cladding where hydrogens charged as soon as the breakaway oxidation started. If so much hydrogen are charged in the cladding, equiaxial monoclinic phase to unstable of stress is formed and it is presumed that oxidation is accelerated because nearby stress caused a crack in equiaxial phase, and that makes corrosion resistance decline sharply.

계면활성제를 함유한 폐수의 효율적 처리 방법에 관한 연구 (A Study on the Treatment of Wastewater Containing Surfactants)

  • Shin, Myoung-Ok;Chung, Moonho
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.109-120
    • /
    • 1997
  • The purpose of this study is to evaluate the effectiveness of wastewater treatment containing surfactant. For that, comparative analysis of effectiveness of Featon Oxidation, Aluminum Sulfate, PAC (Poly Aluminum Chloride) on the treatment of the synthetic wastewater containing LAS (Linear Alkyl Sulfate), a main component of the commercial detergent was carried. Then, the optimum pH, the dosage of reagents, and the concentration of the LAS in each treatment were determined. The results of the study were summarized as following. 1. In Fenton Oxidation, optimal pH was 3 and 97.92% removal of LAS was achieved. However, the increase of the pH reduced the efficiency of LAS removal. The proper chemical dosages of FeSO$_4$ and $H_2O_2$ were 300 mg/l and the increase of dosages didn't affected the removal efficiency. Therefore, it was concluded that the economic chemical dosage was 300 mg/l of FeSO$_4$ and $H_2O_2$. 2. In case of Alum treatment, optimal pH was 11 with 61.13% removal efficiency. At other pH range, the removal efficiency was very low indicating that removal efficiency is greatly influenced by pH. The proper chemical dosage was 200 mg/l with the removal efficiency of 77.65%. The increase of chemical dosage, however, reduced the removal efficiency. 3. In case of using PAC, optimal pH was 6 with 97.99% removal efficiency. The result showed that wastewaters containing surfactant were almost completely removed at pH 6 by PAC. Removal efficiency was decreased by increasing PAC dosage higher than 400 mg/l and dosage over 700 mg/l of PAC abolished the treatment. 4. The comparative analysis of three methods revealed that the effective pH ranges were at pH 2-5 with Fenton oxidation, at pH 6-11 with PAC, and pH 11 with Alum. The removal efficiencies at these pH were 83.95-97.92%, 75.98-97.99% and 61.13%, respectively. 5. Increase in LAS concentration reduced the removal efficiencies of all three methods. In the case of PAC or Alum treatment, treatment abolished at LAS concentration higher than 700 mg/l.

  • PDF

기수지역 선박평형수의 염소 생성 효율에 미치는 전기화학 처리의 영향 (Effect of Electrochemical Treatment on the Chlorine Generation Efficiency of Ballast Water in the Brackish Zone)

  • 최용선;이유기
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.16-22
    • /
    • 2019
  • Indirect oxidation using chlorine species oxidizing agents is often effective in wastewater treatment using an electrochemical oxidation process. When chlorine ions are contained in the wastewater, oxidizing agents of various chlorine species are produced during electrolysis. In a ballast water management system, it is also used to treat ballast water by electrolyzing seawater to produce a chlorine species oxidizer. However, ballast water in the brackish zone and some wastewater has a low chlorine ion concentration. Therefore, it is necessary to study the chlorine generation current efficiency at various chlorine concentration conditions. In this study, the chlorine generating current efficiency of a boron-doped diamond(BDD) electrode and insoluble electrodes are compared with various chloride ion concentrations. The results of this study show that the current efficiency of the BDD electrode is better than that of the insoluble electrodes. The chlorine generation current efficiency is better in the order of BDD, MMO(mixed metal oxide), $Ti/RuO_2$, and $Ti/IrO_2$ electrodes. In particular, when the concentration of sodium chloride is 10 g/L or less, the current efficiency of the BDD electrode is excellent.

고도처리공정과 나노여과공정에서의 미량유해물질 제거 평가 (Assessment of Micro Organic Pollutants Removal Using Advanced Water Treatment Process and Nanofiltration Process)

  • 강준석;최양훈;권순범;유영범
    • 대한환경공학회지
    • /
    • 제36권8호
    • /
    • pp.579-587
    • /
    • 2014
  • 수계에서 검출되는 미량유해물질의 빈도와 종류가 다양해지고 있다. 따라서 정수처리시스템에서 고려되어야 할 부분으로 거론되고 있으며 제거공정과 처리효율에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 고도처리공정과 나노여과공정을 이용한 제거효율을 평가하였다. 나노여과공정의 경우 물질의 물리화학적 특성에 따라 제거율이 상이하게 나타났다. 물질의 분획분자량이 제거율이 가장 큰 영향을 미치는 것으로 확인되었다. 또한, 원수의 pH보다 높은 pKa 값을 갖거나 Log Kow 값이 2 이하인 물질의 제거효율이 감소되었다. 고도처리공정 중 산화공정에서는 대상물질의 분자량이 클수록 그리고 소수성을 띌수록 산화반응에 의한 제거효율이 감소되었다. 흡착공정에서는 산화되지 않은 대부분의 물질이 제거되었으며 $H_2O_2$에 의하여 산화가 더 잘 진행될수록 흡착반응이 향상되었다.

연속흐름식 반응기를 이용한 TiO2/H2O2/UV에 의한 클로로페놀 제거(除去)에 관한 실험적(實驗的) 연구(硏究) (An Experimental Study on the Removal of Chlorophenol by TiO2/H2O2/UV Using Continuous flow Reactor)

  • 이상협;박주석;박중현;김동하
    • 상하수도학회지
    • /
    • 제12권3호
    • /
    • pp.55-64
    • /
    • 1998
  • The degradation efficiency of chlorophenolic compounds in $TiO_2/H_2O_2$ combined system was compared with that of in $TiO_2$ sole system. As a result, the addition of hydrogen peroxide in photocatalytic oxidation reaction greatly enhanced the degradation efficiency of chlorophenolic compounds due to the availability of the hydroxyl radical formed on the $TiO_2$ surface. The hydrogen peroxide under UV illumination produces hydroxyl radicals that appear to be another source of hydroxyl radical formation. These results indicated the $TiO_2/H_2O_2$ combined system shows higher degradation efficiency than the $TiO_2$ sole system. Compared to another oxidation reaction, hydrogen peroxide assisted photocatalytic oxidation is more promising in practical aspect.

  • PDF

산화티타늄피막의 광 전기분해 특성에 대한 연구 (A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films)

  • 박성용;조원일;조병원;이응조;윤경석
    • 한국수소및신에너지학회논문집
    • /
    • 제2권1호
    • /
    • pp.47-56
    • /
    • 1990
  • Pure titanium rods were oxidized by anodic oxidation, furnace oxidation and flame oxidation and used as a electrode in the photodecomposition of water. The maximum photoelectrochemical conversion efficiency(${\eta}$) was found for flame oxidized electrode ($1200^{\circ}C$ for 2 min in air), 0.8 %. Anodically oxidized electrodes have minimum photoelectrochemical conversion efficiencies, 0.3 %. Furnace oxidized electrode ($800^{\circ}C$ for 10min in air) has 0.5% phtoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The efficiency shows a parallelism with the presence of the metallic interstitial compound $TiO_{O+X}$(X < 0.33) at the metal-semiconductor interface, the thickness of the sub oxide layer and that of the external rutile scale.

  • PDF

대청호 원수내 냄새 및 THM 제거방안 연구 (Removal of Odor and THM from the Raw Water of Daecheong Dam)

  • 전항배;윤기식
    • 한국수자원학회논문집
    • /
    • 제30권3호
    • /
    • pp.235-245
    • /
    • 1997
  • 대청호 원수를 취수하여 정수하는 대청수도에서 이취미를 제거하고 THM(Trihalomethanes) 발생량을 줄이기 위하여 기존 표준정수공정에 오존과 활성탄여과공정을 추가한 pilot plant 실험을 수행하였다. pilot 실험결과 표준정수공정에서 DOC(dissolved organic carbon)는 약 25% 제거되었으나, 오존공정에서는 거의 제거되지 않았고, 30일이 지난 후 GAC(granular activated carbon)에서는 약 75%까지 제거되는 것으로 나타났다. 표준정수공정에서 이취미는 약 30%, 오존산화공정에서 약 60%정도 제거되었고, 활성탄여과에서 대부분 제거되었으나, Column 1과 2에서는 DOC와 같이 이취미물질도 파과(breakthrough) 되는 것으로 나타났다. 전염소처리 대신에 중1, 2염소처리를 도입할 경우 전염소처리와 비교하여 약 25%정도의 THM발생량이 감소하였으며, 후염소처리만할 경우 약 30%까지 감소하는 것으로 나타났다.

  • PDF

고급산화법을 이용한 Tetrachloroethylene의 처리 (Removal of Tetrachloroethylene using Advanced Oxidation Processes)

  • 신항식;임재림
    • 상하수도학회지
    • /
    • 제10권4호
    • /
    • pp.64-72
    • /
    • 1996
  • The effect of $O_3$, $O_3/pH$, and $O_3/H_2O_2$, $O_3/UV$, and $H_2O_2/UV$ advanced oxidation process(AOP) were investigated for the treatment of tetrachloroethylen(PCE) at various condition. The removal efficiency of 10, 20, and 30ppm PCE by ozonation were almost same, only about 60%. And pseudo first-order rate constants, ko for overall oxidation was about 0.097($min^{-1}$). In the $O_3/pH$ AOP experiment for the 20ppm PCE, the removal rate of PCE increased with the increase of pH. However, mineralization rate of PCE at pH 7 was higher than at pH 10. In the $O_3/H_2O_2$ AOP, the removal rate of PCE was the highest at peroxide-to-ozone dosage ratio of about 0.9, which PCE was removed over 99.95%. Despite 42% of PCE was directly photolyzed by the UV irradiation, the removal efficiency of PCE by $O_3/UV$ AOP was only about 70%. In $H_2O_2/UV$ AOP, the removal efficiency of PCE increased to about 98% in proportion to the $H_2O_2$ injection concentration at constant UV intensity of 5W/l.

  • PDF

Reaction Kinetics and Dependence of Energy Efficiency in the Dilute Trichloroethylene Removal by Non-thermal Plasma Process combined with Manganese Dioxide

  • Han, Sang-Bo;Oda, Tetsuji;Park, Jae-Youn;Koh, Hee-Seok;Park, Sang-Hyun;Lee, Hyun-Woo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.552-553
    • /
    • 2005
  • In order to improve energy efficiency in the dilute trichloroethylene removal using the nonthermal plasma process, the barrier discharge treatment combined with manganese dioxide was experimentally studied. Reaction kinetics in this process was studied on the basis of final byproducts distribution. Decomposition efficiency was improved to about 99% at the specific energy 40J/L with passing through manganese dioxide. C=C $\pi$ bond cleavage in TCE gave DCAC (single bond, C-C) through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were broken easily in the subsequent catalytic reaction due to the weak bonding energy about 3 ~ 4 eV compared with the double bonding energy in TCE molecules. Oxidation byproducts of DCAC and TCAA from TCE decomposition are generated from the barrier discharge plasma treatment and catalytic surface chemical reaction, respectively. Complete oxidation of TCE into $CO_X$ is required to about 400J/L.

  • PDF