DOI QR코드

DOI QR Code

Assessment of Micro Organic Pollutants Removal Using Advanced Water Treatment Process and Nanofiltration Process

고도처리공정과 나노여과공정에서의 미량유해물질 제거 평가

  • 강준석 (한국수자원공사 K-water 연구원 상하수도연구소) ;
  • 최양훈 (한국수자원공사 K-water 연구원 상하수도연구소) ;
  • 권순범 (한국수자원공사 K-water 연구원 상하수도연구소) ;
  • 유영범 (한국수자원공사 K-water 연구원 상하수도연구소)
  • Received : 2014.05.16
  • Accepted : 2014.08.29
  • Published : 2014.08.31

Abstract

Various kinds of micro organic pollutants have frequently been detected from a water system. Therefore, it is considered to be very important part in the drinking water treatment system. And the research about removal process and processing efficiency have been being conducted briskly. In this study, the removal efficiency was evaluated using advanced water treatment process and nanofiltration process. The removal efficiency of nanofiltration process was very different according to physical and chemical characteristics of materials. The molecular weight of cutoff was the most influential factor in the removal efficiency. And when pKa value was higher than pH of raw water or Log Kow value was below 2, the removal efficiency of material was decreased. In case of oxidation reaction, the bigger the molecular weight of material was and the more hydrophobic a material was, the less oxidation reaction occurred. And the removal efficiency was decreased. Most unoxidized materials were removed by absorption. And the more actively oxidation reaction occurred by $H_2O_2$, the more absorption reaction increased.

수계에서 검출되는 미량유해물질의 빈도와 종류가 다양해지고 있다. 따라서 정수처리시스템에서 고려되어야 할 부분으로 거론되고 있으며 제거공정과 처리효율에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 고도처리공정과 나노여과공정을 이용한 제거효율을 평가하였다. 나노여과공정의 경우 물질의 물리화학적 특성에 따라 제거율이 상이하게 나타났다. 물질의 분획분자량이 제거율이 가장 큰 영향을 미치는 것으로 확인되었다. 또한, 원수의 pH보다 높은 pKa 값을 갖거나 Log Kow 값이 2 이하인 물질의 제거효율이 감소되었다. 고도처리공정 중 산화공정에서는 대상물질의 분자량이 클수록 그리고 소수성을 띌수록 산화반응에 의한 제거효율이 감소되었다. 흡착공정에서는 산화되지 않은 대부분의 물질이 제거되었으며 $H_2O_2$에 의하여 산화가 더 잘 진행될수록 흡착반응이 향상되었다.

Keywords

References

  1. Broseus, R., Vincent, S., Aboulfadl, K., Daneshvar, A., Sauve, S., Barbeau, B. and Prevost, M., "Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment," Water Res., 43(18), 4707-4717(2009). https://doi.org/10.1016/j.watres.2009.07.031
  2. Huber, M. M., Korhonen, S., Ternes, T. A. and Gunten, U. V., "Oxidation of pharmaceuticals during water treatment with chlorine dioxide," Water Res., 39(15), 3607-3617(2005). https://doi.org/10.1016/j.watres.2005.05.040
  3. Esplugas, S., Bila, D. M., Krause, L. G. T. and Dezotti, M., "Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents," J. Hazard. Mater., 149(3), 631-642(2007). https://doi.org/10.1016/j.jhazmat.2007.07.073
  4. Klavarioti, M., Mantzavinos, D. and Kassinos, D., "Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes," Environ. Inter., 35(2), 402-417 (2009). https://doi.org/10.1016/j.envint.2008.07.009
  5. Verliefde, A. R. D., Cornelissen, E. R., Heijman, S. G. J., Petrinic, I., Luxbacher, T., Amy, G. L., Van der Bruggen, B. and Van Dijk, J. C., "Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes," J. Membr. Sci., 330(1-2), 90-103(2009). https://doi.org/10.1016/j.memsci.2008.12.039
  6. Yangali-Quintanilla, V., Sadmani, A., McConville, M., Kennedy, M. and Amy, G., "A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes," Water Res., 44(2), 373-384(2010). https://doi.org/10.1016/j.watres.2009.06.054
  7. Verliefde, A. R. D., Cornelissen, E. R., Heijman, S. G. J., Verberk, J. Q. J. C., Amy, G., Van der Bruggen, B. and Van Dijk, J. C., "Construction and validation of a full-scale model for rejection of organic micropollutants by NF membranes," J. Membr. Sci., 339(1-2), 10-20(2009). https://doi.org/10.1016/j.memsci.2009.03.038
  8. Anwar Sadmani, A. H. M., Andrews, R. C. and Bagley, D. M., "Nanofiltration of pharmaceutically active and endocrine disrupting compounds as a function of compound interactions with DOM fractions and cations in natural water," Sep. Purif. Technol., 122(10), 462-471(2014). https://doi.org/10.1016/j.seppur.2013.12.003
  9. Yoon, Y., Westerhoff, P., Snyder, S. A. and Wert, E. C., "Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products," J. Membr. Sci., 270(1-2), 88-100(2006). https://doi.org/10.1016/j.memsci.2005.06.045
  10. Kimura, K., Toshima, S., Amy, G. and Watanabe, Y., "Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes," J. Membr. Sci., 245(1-2), 71-78(2004). https://doi.org/10.1016/j.memsci.2004.07.018