• 제목/요약/키워드: Oxidation efficiency

검색결과 952건 처리시간 0.029초

저온 플라즈마와 활성슬러지 복합 공정에서 체류시간 변화가 악취 저감 및 슬러지 가용화에 미치는 영향 (Effects of Retention Time on the Simultaneous of Odor Removal and Sludge Solubilization Using a Non-Thermal Plasma System)

  • 남궁형규;황현정;송지현
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.815-824
    • /
    • 2011
  • In this study, a non-thermal plasma system was employed to simultaneously remove odorous compounds and organic sludge. The system consisted of two reactors; the first one was the non-thermal plasma reactor where ozone was produced by the plasma reaction and the ozone oxidized hydrogen sulfide, the model odorous compound, and then the ozone-laden gas stream was introduced to the second reactor where wasted sludge was disintegrated and solubilized by ozone oxidation. In this study, the gas retention time (GRT) and the hydraulic retention time (HRT) were changed in the two-reactor system, and the effects of GRT and HRT on reduction efficiencies of odor and sludge were determined. As the GRT increased, the ozone concentration increased resulting in an increasing efficiency of hydrogen sulfide removal. However, the overall ozone loading rate to the second sludge reactor was the same at any GRT, which resulted in an insignificant change in sludge reduction rate. When HRTs in the sludge reactor were 1, 2, 4 hours, the sludge reduction rates were approximately 30% during the four-hour operation, while the rate increased to 70% at the HRT of 6 hours. Nevertheless, at HRTs greater than 4 hours, the solubilization efficiency was not proportionally increased with increasing specific input energy, indicating that an appropriate sludge retention time needs to be applied to achieve effective solubilization efficiencies at a minimal power consumption for the non-thermal plasma reaction.

IrO2 기반 수처리용 산화 전극의 표면 이종 접합 구성에 따른 활성 염소종 발생 증진 특성 연구 (A study on reactive chlorine species generation enhanced by heterojunction structures on surface of IrO2-based anodes for water treatment)

  • 홍석화;조강우
    • 상하수도학회지
    • /
    • 제32권4호
    • /
    • pp.349-355
    • /
    • 2018
  • This study interrogated multi-layer heterojunction anodes were interrogated for potential applications to water treatment. The multi-layer anodes with outer layers of $SnO_2/Bi_2O_3$ and/or $TiO_2/Bi_2O_3$ onto $IrO_2/Ta_2O_5$ electrodes were prepared by thermal decomposition and characterized in terms of reactive chlorine species (RCS) generation in 50 mM NaCl solutions. The $IrO_2/Ta_2O_5$ layer on Ti substrate (Anode 1) primarily served as an electron shuttle. The current efficiency (CE) and energy efficiency (EE) for RCS generation were significantly enhanced by the further coating of $SnO_2/Bi_2O_3$ (Anode 2) and $TiO_2/Bi_2O_3$ (Anode 3) layers onto the Anode 1, despite moderate losses in electrical conductivity and active surface area. The CE of the Anode 3 was found to show the highest RCS generation rate, whereas the multi-junction architecture (Anode 4, sequential coating of $IrO_2/Ta_2O_5$, $SnO_2/Bi_2O_3$, and $TiO_2/Bi_2O_3$) showed marginal improvement. The microscopic observations indicated that the outer $TiO_2/Bi_2O_3$ could form a crack-free layer by an incorporation of anatase $TiO_2$ particles, potentially increasing the service life of the anode. The results of this study are expected to broaden the usage of dimensionally stable anodes in water treatment with an enhanced RCS generation and lifetime.

기질 system의 유형에 따른 항산화제의 효과에 관한 연구 (Efficiency of Antioxidants on Types of Substrate Systems)

  • 김찬희;안명수
    • 한국식품조리과학회지
    • /
    • 제14권5호
    • /
    • pp.560-565
    • /
    • 1998
  • The purpose of this study was to investigate any differences in the efficiency of various antioxidants for the three types of substrates such as corn oil in water (O/W) emulsion, water in com oil (W/O) emulsion, and bulky corn oil. ${\alpha}$-Tocopherol (${\alpha}$-Toc) at 0.01 or 0.02%, ascorbic acid (AsA), ascorbyl palmitate (AP), and BHT at 0.02% were added separately to the prepared O/W emulsion, W/O emulsion, and bulk oil, and their antioxidative effects were compared. The mixture of ${\alpha}$-Toc ind AsA or AP at the level of 0.02% also was tested to observe any synergistic effect. Oxidation was made by storing at 42${\pm}$1$^{\circ}C$ for 25 days and the oxidative stability was determined by peroxide value and conjugated dienoic acid with time fluctuation of storage. The results were as follows: 1. In case of O/W emulsion, the order of antioxidative effect was AP> ${\alpha}$-Toc+AP>${\alpha}$-Toc+AsA>AsA>BHT. 2. In case of W/O emulsion, the order of antioxidative effect was AsA>AP>${\alpha}$-Toc+AsA>BHT. ${\alpha}$-Toc+AP mixture showed the prooxidant effect rather than synergistic effect. 3. In case of bulk oil, the order of antioxidative effect was AsA>AP>${\alpha}$-Toc+AsA>${\alpha}$-Toc+AP\ulcornerBHT. Therefore, AsA, a hydrophilic antioxidant, was more effective in W/O emulsion system than in O/W emulsion system, while the opposite trend was found in AP, a lipophilic antioxidant. AsA, a hydrophilic antioxidant, was more efficient in bulk oil of anhydrous substrate. ${\alpha}$-Toc showed prooxidant effects in all substrates.

  • PDF

Production of Methanol from Methane by Encapsulated Methylosinus sporium

  • Patel, Sanjay K.S.;Jeong, Jae-Hoon;Mehariya, Sanjeet;Otari, Sachin V.;Madan, Bharat;Haw, Jung Rim;Lee, Jung-Kul;Zhang, Liaoyuan;Kim, In-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2098-2105
    • /
    • 2016
  • Massive reserves of methane ($CH_4$) remain unexplored as a feedstock for the production of liquid fuels and chemicals, mainly because of the lack of economically suitable and sustainable strategies for selective oxidation of $CH_4$ to methanol. The present study demonstrates the bioconversion of $CH_4$ to methanol mediated by Type I methanotrophs, such as Methylomicrobium album and Methylomicrobium alcaliphilum. Furthermore, immobilization of a Type II methanotroph, Methylosinus sporium, was carried out using different encapsulation methods, employing sodium-alginate (Na-alginate) and silica gel. The encapsulated cells demonstrated higher stability for methanol production. The optimal pH, temperature, and agitation rate were determined to be pH 7.0, $30^{\circ}C$, and 175 rpm, respectively, using inoculum (1.5 mg of dry cell mass/ml) and 20% of $CH_4$ as a feed. Under these conditions, maximum methanol production (3.43 and 3.73 mM) by the encapsulated cells was recorded. Even after six cycles of reuse, the Na-alginate and silica gel encapsulated cells retained 61.8% and 51.6% of their initial efficiency for methanol production, respectively, in comparison with the efficiency of 11.5% observed in the case of free cells. These results suggest that encapsulation of methanotrophs is a promising approach to improve the stability of methanol production.

Improvement of RT-PCR Sensitivity for Fruit Tree Viruses by Small-scale dsRNA Extraction and Sodium Sulfite

  • Lee, Sin-Ho;Kim, Hyun-Ran;Kim, Jae-Hyun;Kim, Jeong-Soo
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.142-146
    • /
    • 2004
  • Woody plant tissues contain great amounts of phenolic compounds and polysaccharides. These substances inhibit the activation of reverse transcriptase and/or Taq polymerase in RT-PCR. The commonly used multiple-step protocols using several additives to diminish polyphenolic compounds during nucleic acid extraction are time consuming and laborious. In this study, sodium sulfite was evaluated as an additive for nucleic acid extraction from woody plants and the efficiency of RT-PCR assay of commercial nucleic acid extraction kits and small-scale dsRNA extraction was compared. Sodium sulfite was used as an inhibitor against polyphenolic oxidases and its effects were compared in RNA extraction by commercial extraction kit and small-scale double-stranded RNA (dsRNA) extraction method for RT-PCR. During nucleic acid extraction, addition of 0.5%-1.5%(w/v) of sodium sulfite to lysis buffer or STE buffer resulted in lighter browning by oxidation than extracts without sodium sulfite and improved the RT-PCR detection. When commercial RNA extraction kit was used, optimal concentrations of sodium sulfite were variable according to the tested plant. However, with dsRNA as RT-PCR template, sodium sulfite 1.5% in STE buffer improved the detection efficiency of Apple chlorotic leaf spot virus (ACLSV) and Apple stem grooving virus (ASGV) in fruit trees, and reduced the unspecific amplifications signi-ficantly. Furthermore, when viruses existed at low titers in host plant, small-scale dsRNA extractions were very reliable.

전기방사와 수열합성법으로 제작한 광전화학셀 전극용 나노 계층형 아연산화물 구조 연구 (ZnO Hierarchical Nanostructures Fabricated by Electrospinning and Hydrothermal Methods for Photoelectrochemical Cell Electrodes)

  • 이환표;정혁;김옥길;김효진;김도진
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.655-660
    • /
    • 2013
  • Photoelectrochemical cells have been used in photolysis of water to generate hydrogen as a clean energy source. A high efficiency electrode for photoelectrochemical cell systems was realized using a ZnO hierarchical nanostructure. A ZnO nanofiber mat structure was fabricated by electrospinning of Zn solution on the substrate, followed by oxidation; on this substrate, hydrothermal synthesis of ZnO nanorods on the ZnO nanofibers was carried out to form a ZnO hierarchical structure. The thickness of the nanofiber mat and the thermal annealing temperature were determined as the parameters for optimization. The morphology of the structures was examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The performance of the ZnO nanofiber mat and the potential of the ZnO hierarchical structures as photoelectrochemical cell electrodes were evaluated by measurement of the photoelectron conversion efficiencies under UV light. The highest photoconversion efficiency observed was 63 % with a ZnO hierarchical structure annealed at $400^{\circ}C$ in air. The morphology and the crystalline quality of the electrode materials greatly influenced the electrode performance. Therefore, the combination of the two fabrication methods, electrospinning and hydrothermal synthesis, was successfully applied to fabricate a high performance photoelectrochemical cell electrode.

A Zinc Porphyrin Sensitizer Modified with Donor and Acceptor Groups for Dye-Sensitized Solar Cells

  • Lee, Seewoo;Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.3052-3058
    • /
    • 2014
  • In this article, we have designed and synthesized a novel donor-${\pi}$-acceptor (D-${\pi}$-A) type porphyrin-based sensitizer (denoted UI-5), in which a carboxyl anchoring group and a 9,9-dimethyl fluorene were introduced at the meso-positions of porphyrin ring via phenylethynyl and ethynyl bridging units, respectively. Long alkoxy chains in ortho-positions of the phenyls were supposed to reduce the degree of dye aggregation, which tends to affect electron injection yield in a photovoltaic cell. The cyclic voltammetry was employed to determine the band gap of UI-5 to be 1.41 eV based on the HOMO and LUMO energy levels, which were estimated by the onset oxidation and reduction potentials. The incident monochromatic photon-to-current conversion efficiency of the UI-5 DSSC assembled with double-layer (20 nm-sized $TiO_2$/400 nm-sized $TiO_2$) film electrodes appeared lower upon overall ranges of the excitation wavelengths, but exhibited a higher value over the NIR ranges (${\lambda}$ = 650-700 nm) compared to the common reference sensitizer N719. The UI-5-sensitized cell yielded a relatively poor device performance with an overall conversion efficiency of 0.74% with a short circuit photocurrent density of $3.05mA/cm^2$, an open circuit voltage of 0.54 mV and a fill factor of 0.44 under the standard global air mass (AM 1.5) solar conditions. However, our report about the synthesis and the photovoltaic characteristics of a porphyrin-based sensitizer in a D-${\pi}$-A structure demonstrated a significant complex relationship between the sensitizer structure and the cell performance.

Effect of the supernatant reflux position and ratio on the nitrogen removal performance of anaerobic-aerobic slaughterhouse wastewater treatment process

  • Tong, Shuang;Zhao, Yan;Zhu, Ming;Wei, Jing;Zhang, Shaoxiang;Li, Shujie;Sun, Shengdan
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.309-315
    • /
    • 2020
  • Slaughterhouse wastewater (SWW) is characterized as one of the most harmful agriculture and food industrial wastewaters due to its high organic content. The emissions of SWW would cause eutrophication of surface water and pollution of groundwater. This study developed a pilot scale anaerobic-aerobic slaughterhouse wastewater treatment process (AASWWTP) to enhance the chemical oxygen demand (COD) and total nitrogen (TN) removal. The optimum supernatant reflux position and ratio for TN removal were investigated through the modified Box-Behnken design (BBD) experiments. Results showed that COD could be effectively reduced over the whole modified BBD study and the removal efficiency was all higher than 98%. The optimum reflux position and ratio were suggested to be 2 alure and 100%, respectively, where effluent TN concentration was satisfied with the forthcoming Chinese discharge standard of 25 mg/L. Anaerobic digestion and ammonia oxidation were considered as the main approaches for COD and TN removal in the AASWWTP. The results of inorganic nutrients (K+, Na+, Ca2+ and Mg2+) indicated that the SWW was suitable for biological treatment and the correspondingly processes such as AASWWTP should be widely researched and popularized. Therefore, AASWWTP is a promising technology for SWW treatment but more research is needed to further improve the operating efficiency.

Experimental study of degradation and biodegradability of oxytetracycline antibiotic in aqueous solution using Fenton process

  • Zouanti, Mustapha;Bezzina, Mohamed;Dhib, Ramdhane
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.316-323
    • /
    • 2020
  • The degradation of aqueous oxytetracycline (OTC) from an aqueous solution antibiotic using H2O2/Fe2+ process was studied in one 1 L batch chemical reactor. The extent of OTC degradation (20 mg/L) was investigated from a known initial pH solution, temperature and the type of catalyst (Fe2+, Fe3+) and for various initial concentrations of OTC, H2O2 and Fe2+. The degradation efficiency achieved was found to be very important (90.82% and 90.63%) at initial pH solution of 3 and 4, respectively. However, the type of catalyst and the reaction temperature had a slight impact on the final degradation of OTC. The results showed that the OTC removal increased with increasing initial H2O2 concentration in the range of 70 to 150 mg/L and initial Fe2+ concentrations in the range of 2 to 5 mg/L. The highest degradation efficiency obtained at ambient temperature was 90.95% with initial concentration of OTC of 10 mg/L, H2O2 = 150 mg/L and Fe2+ = 5 mg/L. Moreover, biodegradability improved from 0.04 to 0.36 and chemical oxygen demand degradation was 78.35% after 60 min of treatment. This study proved that Fenton process can be used for pretreatment of wastewater contaminated by OTC before a biological treatment.

Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions

  • Kwon, Young-Yon;Choi, Kyung-Mi;Cho, ChangYeon;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • 제38권12호
    • /
    • pp.1054-1063
    • /
    • 2015
  • Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 ($sdh1{\Delta}$, $sdh2{\Delta}$, $sdh4{\Delta}$, $cor1{\Delta}$, $cyt1{\Delta}$, $qcr7{\Delta}$, $qcr8{\Delta}$, $rip1{\Delta}$, $cox6{\Delta}$, $cox7{\Delta}$, $cox9{\Delta}$, $atp4{\Delta}$, $atp7{\Delta}$, and $atp17{\Delta}$) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-$F_1F_0$-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.