• 제목/요약/키워드: Oxidation and coatings

검색결과 186건 처리시간 0.024초

Hydrothermal Coating of Hydroxyapatite on ZrO2 Ceramics

  • Ha, Jung-Soo
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.463-468
    • /
    • 2006
  • Hydrothermal deposition of hydroxyapatite coatings on two types of $ZrO_2$ substrates (3 mol% $Y_2O_3$-doped and 13 mol% $CeO_2$-doped tetragonal $ZrO_2s$) was studied using aqueous solutions of $Ca(NO_3)_2\;4H_2O$ and $(NH_4)_2HPO_4$ containing EDTA (ethylene diamine tetra acetic acid) disodium salt as a chelating agent for $Ca^{2+}$ ions. For the precipitation of the coatings, the $EDTA-Ca^{2+}$ chelates were decomposed by oxidation with $H_2O_2$ at $90^{\circ}C$. The deposition behavior, morphology, and orientation of the coatings were investigated while varying the solution pH using scanning electron microscopy and X-ray diffractometry. For the two sub-strates, sparse deposition of the coating was obtained at pH 5.5, whereas a uniform deposition was obtained at pH 7.1, 9.8, and 11.4 with a denser microstructure for the higher pH. The coating consisted of thin needle-like or plate-like crystals ($1-2{\mu}m$ length or diameter) at pH 7.1, but fine rod-like crystals ($1-2{\mu}m$ length, $0.1{\mu}m$ diameter) at pH 9.8 and 11.4. The coatings were $1-3{\mu}m$ thick and showed a preferred orientation of the hydroxyapatite crystals with their c axis (i.e., the elongated direction) perpendicular to the substrate surface especially for pH 9.8 and 11.4.

선박용 LED 등기구의 알루미늄 합금 방열판의 방열성능 향상을 위한 플라즈마 전해 산화의 공정변수 선정에 관한 연구 (Process Parameter Selection for Plasma Electrolytic Oxidation to Improve Heat Dissipation Performance of Aluminum Alloy Heat Sink for Shipboard LED Luminaries)

  • 이정형;정인교;한민수
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.415-420
    • /
    • 2018
  • The possibility of an improvement in heat dissipation performance of aluminum alloy heat sink for shipboard LED luminaries through plasma electrolytic oxidation (PEO) was investigated. Four different PEO coatings were produced on aluminum alloy 5052 in silicate based alkaline solution by varying current density ($50{\sim}200mA/cm^2$). On voltage-time response curves, three stages were clearly distinguished at all current densities, namely an initial linear increase, slowdown of increase rate, and steady state(constant voltage). It was found that the increase in current density caused the breakdown voltage to increase. Two different surface morphologies - coralline porous structure and pancake structure - were confirmed by SEM examination. The coralline porous structure was predominant in the coatings produced at lower current densities (50 and $100mA/cm^2$) while under high current densities(150 and $200mA/cm^2$) the pancake structure became dominant. The coating thickness was measured and found to be in a range between about $13{\mu}m$ and $44{\mu}m$, showing increasing thickness with increasing current density. As a result, $100mA/cm^2$ was proposed as an effective process parameter to improve the heat dissipation performance of aluminum alloy heat sink, which could lower the LED operating temperature by about 30%.

박막 코팅을 이용한 SOFC 분리판 재료의 내산화성 향상 (Improvement of Oxidation-resisting Characteristic for SOFC Interconnect Material by Use of Thin Film Coating)

  • 이창보;배중면
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1211-1217
    • /
    • 2006
  • This study is focused on oxidation prevention of STS430, which is generally used as solid oxide fuel cell(SOFC) interconnect at intermediate operating temperatures with oxidation-proof coatings. Inconel, $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ and $La_{0.6}Sr_{0.4}CoO_3(LSCr)$ were chosen as coating materials. Using a radio frequency magnetron sputtering method, each target material was deposited as thin film on STS430 and was analyzed to find out favorable conditions. In this study, LSCr-coated STS430 can reduce electrical resistance to 1/3 level, compared with uncoated STS430. Also, long-term durability test at $700^{\circ}C$ for 1000 hours tells that LSCr thin layer performs an important role to prohibit serious degradations. Superior oxidation-resistant characteristic of LSCr-coated STS430 is attributed to the inhibition of spinel structure formation such as $MnCr_2O_4$.

Antioxidant and Bioactive Films to Enhance Food Quality and Phytochemical Production during Ripening

  • Min Byungjin;Dawson Paul L.;Shetty Kalidas
    • 한국축산식품학회지
    • /
    • 제25권1호
    • /
    • pp.60-65
    • /
    • 2005
  • Antioxidant films are one active packaging technology that can extend food shelf-life through preventing lipid oxidation, stabilizing color, maintaining sensory properties and delaying microbial growth in foods. Because raw, fresh and minimal processed foods are more perishable during storage or under display conditions than further processed foods, they rapidly lose their original quality. Foods are susceptible to physical, chemical, and biochemical hazards to which packaging films can be effective barriers. Although films incorporated natural (tocopherols, flavonoids and phenolic acids) or synthetic antioxidants (BHT, BHA, TBHQ, propyl gallate) have been extensively tested to improve quality and safety of various foods, food applications require addressing issues such as physical properties, chemical action, cost, and legal approval. Increased interest in natural antioxidants as substitutes for synthetic antioxidants has triggered research on use of the new natural antioxidants in films and coatings. Use of new components (phytochemicals) as film additives can improve food quality and human health. The biosynthesis of plant phenolics can potentially be optimized by active coatings on harvested fruits and vegetables. These coatings can trigger the plants natural proline-linked pentose phosphate pathway to increase the phenolic contents and maintain overall plant tissue quality. This alternate metabolic pathway has been proposed by Dr. K. Shetty and is supported by numerous studies. A new generation of active food films will not only preserve the food, but increase food's nutritional quality by optimizing raw food biochemical production of phytochemicals.

Comparison of HVOF Thermal Spray Coatings of T800 and WC-Co Powders

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Baek, N.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • 한국표면공학회지
    • /
    • 제39권6호
    • /
    • pp.295-301
    • /
    • 2006
  • Hard chrome plating has been used in surface hard coating over 50 years both for applying hard coating and re-building of worn components. Hard chrome plating solution and mist pollute environment with very toxic $Cr^{6+}$(hex-Cr) known as carcinogen which causes lung cancer, High velocity oxy-fuel (HVOF) thermal spray coatings of WC base cermet and Co-alloy powders are the most promising candidates for the replacement of the traditional hard chrome plating. Surface properties, wear, and friction behaviors of micron size Co-alloy (T800) and micron size WC-l2Co (WC-Co) have been studied for the application as hard coatings. The temperature dependence of wear and friction behaviors of T800 and WC-Co have been investigated at the temperature of $25^{\circ}C$ and $538^{\circ}C$ for the application to high speed spindle.

Ti(Al,O)/$Al_2O_3$ 플라즈마 코팅한 SS41의 고온산화 거동 (High Temperature Oxidation Behavior of Plasma-sprayed Ti(Al,O)/$Al_2O_3$ Coatings on SS41 Steel)

  • 최갑송;우기도;이현범;전재열
    • 열처리공학회지
    • /
    • 제20권5호
    • /
    • pp.231-236
    • /
    • 2007
  • High velocity oxy-fuel (HVOF) spraying was used to coat Ti(Al,O)/$Al_2O_3$ powder onto the SS41 steel plate. Macrostructure of the coated specimen has been investigated by scanning electron micrograph (SEM). High temperature oxidation behavior of the coated specimen and SS41 steel have been studied. From the results of SEM observation, Ti(Al,O)/$Al_2O_3$ powder was coated well onto the substrate SS41 steel. Porosity onto the coated layer was only 0.38%. The oxidation results showed that Ti(Al,O)/$Al_2O_3$ powder coated SS41 steel have improved little oxidation resistance at $900^{\circ}C$ in air, but improved remarkably oxidation resistance at $800^{\circ}C $ in air compare to the substrate SS41 steel.

R.F magnetron sputtering법으로 제조된 TiAlN 코팅 층의 열처리 특성 (Characterization of TiAlN Coated Layer with Heat Treatment Prepared by R.F Magnetron Sputtering)

  • 송동환;양권승;이종국
    • 열처리공학회지
    • /
    • 제19권4호
    • /
    • pp.225-229
    • /
    • 2006
  • TiAlN coatings are available in various industry fields as a wear resistant coating for high-speed machining, due to its high hardness, excellent oxidation and corrosion resistance. The corrosion resistance of TiAlN multilayer coatings is better than that of single TiN coatings. Most of TiAlN coated layers were formed by heat treatment of coating layers with a non-stoichiometric $Ti_xAl_{1-x}N$. In this study, TiAlN coated layer was prepared by R.F magnetron sputtering and investigated the thermal behavior for heat treatment at various temperature in tube furnace. The formation of large particles with porous microstructure and phase change from HCP to FCC were observed on coated layer during heat treatment over $850^{\circ}C$ and it reduced the corrosion resistance of coated TiAlN layers.

대기 플라즈마 용사공정을 이용한 Fe계 벌크 비정질 금속 코팅의 초기 분말의 화학조성과 크기에 대한 미세 조직 및 마모 특성 (Microstructure and Tribological Properties along with Chemical Composition and Size of Initial Powder in Fe-based BMG Coating through APS)

  • 김정환;윤상훈;나현택;이창희
    • 한국표면공학회지
    • /
    • 제41권5호
    • /
    • pp.220-225
    • /
    • 2008
  • In this study, two kinds of Fe-based bulk metallic glasses (BMG) powder were built-up through atmospheric plasma spray (APS) technique. The microstructure of two coatings was analyzed through X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Crystallization and oxidation in coatings were affected by chemical composition and initial powder size. Then, both of them influenced the tribological property.

Corrosion Monitoring of PEO-Pretreated Magnesium Alloys

  • Gnedenkov, A.S.;Sinebryukhov, S.L.;Mashtalyar, D.V.;Gnedenkov, S.V.;Sergienko, V.I.
    • Corrosion Science and Technology
    • /
    • 제16권3호
    • /
    • pp.151-159
    • /
    • 2017
  • The MA8 alloy (formula Mg-Mn-Се) has been shown to have greater corrosion stability than the VMD10 magnesium alloy (formula Mg-Zn-Zr-Y) in chloride-containing solutions by Scanning Vibrating Electrode Technique (SVET) and by optical microscopy, gravimetry, and volumetry. It has been established that the crucial factor for the corrosion activity of these samples is the occurrence of microgalvanic coupling at the sample surface. The peculiarities of the kinetics and mechanism of the corrosion in the local heterogeneous regions of the magnesium alloy surface were investigated by localized electrochemical techniques. The stages of the corrosion process in artificial defects in the coating obtained by plasma electrolytic oxidation (PEO) at the surface of the MA8 magnesium alloy were also studied. The analysis of the experimental data enabled us to determine that the corrosion process in the defect zone develops predominantly at the magnesium/coating interface. Based on the measurements of the corrosion rate of the samples with PEO and composite polymer-containing coatings, the best anticorrosion properties were displayed by the composite polymer-containing coatings.

알루미늄 확산코팅재료의 주기산화 특성에 관한 연구 (A Study on the Cyclic Oxidation Properties of Aluminum Diffusion Coated Materials)

  • 강석철;민경만;김길무
    • 한국표면공학회지
    • /
    • 제32권1호
    • /
    • pp.49-60
    • /
    • 1999
  • The protective oxide scales and coatings formed on high temperature materials must be preserved in high temperature atmosphere. And the thermal stresses induced by thermal cycling and the growth stresses by the formation of oxide scales can cause the loss of adherence and spalling of the oxide scales and coated layers. Among the coating processes Al diffusion coating is favored due to thermochemical stability and superior adherence in an hostile atmosphere. In this study, protective oxide forming element, Al was coated on Ni, Inconel 600 and 690 by diffusion coating process varying coating temperature and time. And the surface stability and adherence of oxide scales formed on those Al diffusion coated materials were evaluated by thermal cycling test. Al diffusion coated specimens showed superior cyclic oxidation resistance compared to bare ones and specimens coated for longer period had better cyclic oxidation resistance, due to the abundant amount of Al in the coated layer. Meanwhile Al diffusion coated Inconel 600 and 690 showed improved cyclic oxidation resistance by the effect of Al in the coated layer and Cr in the substrate. Comparing both Al diffusion coated Inconel 600 and 690, Al diffusion coated Inconel 690 maintained better adhesion between coated layer and substrate by virtue of the bridging effect resulting from the segregation of Cr in the interdiffusion zone.

  • PDF