• Title/Summary/Keyword: Oxidation State

검색결과 586건 처리시간 0.026초

The Development of High Oxygen Pressures and the Stabilization of Unusual Oxidation States of Transition Metals

  • Gerard DEMAZEAU
    • Journal of the Korean Chemical Society
    • /
    • 제42권1호
    • /
    • pp.135-140
    • /
    • 1998
  • High oxygen pressures appear an important tool in Solid State Chemistry. Two main routes can be developed: (i) the stabilization of thermally unstable oxides, used as precursors, in order to open the synthesis of new materials, (ii) the stabilization of the highest oxidation states of transition metals. This paper is essentially devoted to this second research axis. The methodology developed for preparing new oxides containing Fe(Ⅴ), Ir(Ⅵ), high spin Fe(Ⅳ) and Cu(Ⅲ) is described.

  • PDF

Electrical and Chemical Characteristics of the Grain Boundaries of Semiconducting $BaTiO_3$ Ceramics Prepared with Surface-Coated Powders (표면 코팅된 분말을 이용하여 제조된 반도성 $BaTiO_3$ 소결체의 입계 화학 및 전기적 특성)

  • 박명범;김정돈;조남희
    • Journal of the Korean Ceramic Society
    • /
    • 제37권4호
    • /
    • pp.338-344
    • /
    • 2000
  • Grain boundary chemistry and electrical characteristics of polycrystalline BaTiO3 ceramics, which were prepared with sol-gel surface-coated semiconducting powders, were investigated. Mn ions were coated on the powder surface by sol-gel coating-techniques. The additives coated on the surface of the powders were observed to be present near the grain boundaries of the ceramics. The ceramics exhibit the PTCR characteristics with a resistivity jump ratio(Pmax/Pmin) of about 2$\times$103. With raising the temperature from room temprature to 20$0^{\circ}C$, the oxidation state of the Mn ions varied from Mn3+ to Mn2+ in the coating layers. Near the grain boundaries an excessive negative charge layer of about 20nm was formed.

  • PDF

A Study on Plasma Electrolytic Oxidation Surface Treatments for Magnesium Alloy Eyeglass Frames (마그네슘 합금 안경테의 Plasma Electrolytic Oxidation 표면처리 효과 연구)

  • Kim, Ki-Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • 제15권4호
    • /
    • pp.313-317
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the surface characteristics of plasma electrolytic oxidation (PEO) surface treatment on AZ31 magnesium alloy eyeglass frames. Methods: The plasma electrolytic oxidation (PEO) surface was created by varying the DC voltage. The oxidation layer of coating was measured using phase analysis by X-ray diffraction. The microstructural morphology was observed using a scanning electron microscopy. Coating layer and the concentration of elements were investigated using the energy dispersive X-ray spectra. Results: The MgO XRD peak was increased as the voltage increased, and the density of the surface oxide film was also increased. The changes in the composition of the EDS also showed a good agreement. Conclusions: The compound oxide crystallization of PEO oxide film layer was done by increasing formation of MgO as the voltage increased. The treatment at 65V and 60 sec showed the best results at surface state, contact angles and salt spray test.

Decomposition of Humic Acid and Reduction of THM Formation Potential by Ozone and Combined Ozone/Ultraviolet Oxidation (오존 및 오존/UV 산화법을 이용한 휴믹산의 분해와 THM 발생능의 감소)

  • Park, Ju-Seok;Park, Tae-Jin;Kwon, Bong-Kee
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제10권4호
    • /
    • pp.55-63
    • /
    • 1996
  • This research was based on comparing ozonation with combined ozone/ultraviolet oxidation through the methods of reducing THM produced during water treatment. The results were as follows ; 1. The decline of THM concentration was appeared according as ozone dosage increases with ozonation and combined ozone/ultraviolet oxidation. The more effective method was the treatment of irradiating UV then ozonation. In the beginning of reaction the decline rate of THM formation potential was low, I thought it was because that the reaction of ozone and humic acid needed times to be steady state, or that THM formation potential existed according to humic acid. 2. The effect of combined ozone/ultraviolet oxidation when ozone dosage was 4.2mg/L min was almost the same that of ozonation when ozone dosage was 8.6mg/L min. 3. In experiment of TOC decline through ozonation and combined ozone/ultraviolet oxidation, TOC concentration was also dropped according to increasing ozone dosage and the more effective results were showed in treatment of irradiating UV than ozonation. But the similar TOC remove rates were showed in experiment of changing with ozone dosage during combined ozone/ultraviolet oxidation TOC remove rates were low in proportion to the remove rates of THM formation potential, it was considered that humic acid was made low molecule itself though ozonation and ozone/ultraviolet oxidation. Moreover, the high degree of remove efficiency will be get though the treatment of activated carbon of GAC treatment after combined ozone/ultravilet oxidation.

  • PDF

Ex-situ 7Li MAS NMR Study of Olivine Structured Material for Cathode of Lithium Ion Battery

  • Lee, Youngil;An, JiEun;Park, Seul-A;Song, HyeYeong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • 제18권2호
    • /
    • pp.63-68
    • /
    • 2014
  • $^7Li$ nuclear magnetic resonance (NMR) spectra have been observed for $LiMPO_4$ (M = Fe, Mn) samples, as a promising cathode material of lithium ion battery. Observed $^7Li$ shifts of $LiFe_{1-x}Mn_xPO_4$ (x = 0, 0.6, 0.8, and 1) synthesized with solid-state reaction are compared with calculated $^7Li$ shift ranges based on the supertranferred hyperfine interaction of Li-O-M. Ex situ $^7Li$ NMR study of $LiFe_{0.4}Mn_{0.6}PO_4$ in different cut-off voltage for the first charge process is also performed to understand the relationship between $^7Li$ chemical shift and oxidation state of metals affected by delithiation process. The increment of oxidation state for metals makes to downfield shift of $^7Li$ by influencing the supertranferred hyperfine interaction.

Electron Spin Resonance Study of Manganese Ion Species Incorporated into Novel Aluminosilicate Nanospheres with Solid Core/Mesoporous Shell Structure

  • Back, Gern-Ho;Kim, Ki-Yub;Kim, Yun-Kyung;Yu, Jong-Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • 제14권2호
    • /
    • pp.55-75
    • /
    • 2010
  • An ion-exchanged reaction of $MnCl_2$ with Al-incorporated solid core/mesoporous shell silica (AlSCMS) followed by calcinations generated manganese species, where average oxidation state of manganese ion is 3+, in the mesoporous materials. Dehydration results in the formation of $Mn^{2+}$ ion species, which can be characterized by electron spin resonance (ESR). The chemical environments of the manganese centers in Mn-AlSCMS were investigated by diffuse reflectance, UV-VIS and ESR spectroscopic methods. Upon drying at 323 K, part of manganese is oxidized to higher oxidation state ($Mn^{3+}$ and $Mn^{4+}$) and further increase in (average) oxidation state takes place upon calcinations at 823 K. It was found that the manganese species on the wall of the Mn-AlSCMS were transformed to tetrahedral $Mn^{3+}$ or $Mn^{4+}$ and further changed to square pyramid by additional coordination to water molecules upon hydration. The oxidized $Mn^{3+}$ or $Mn^{4+}$ species on the surfaces were reversibly reduced to $Mn^{2+}$ or $Mn^{3+}$ species or lower valances by thermal process. Mn(II) species I with a well resolved sextet was observed in calcined, hydrated Mn-AlSCMS, while Mn (II) species II with g = 5.1 and 3.2 observed in dehydrated Mn-AlSCMS. Both species I and II are considered to be non-framework Mn(II).