A Study on Plasma Electrolytic Oxidation Surface Treatments for Magnesium Alloy Eyeglass Frames

마그네슘 합금 안경테의 Plasma Electrolytic Oxidation 표면처리 효과 연구

  • Kim, Ki-Hong (Department of Optometry&Vision Science, Catholic University of Daegu)
  • 김기홍 (대구가톨릭대학교 안경광학과)
  • Received : 2010.11.09
  • Accepted : 2010.12.18
  • Published : 2010.12.31

Abstract

Purpose: The purpose of this study was to investigate the surface characteristics of plasma electrolytic oxidation (PEO) surface treatment on AZ31 magnesium alloy eyeglass frames. Methods: The plasma electrolytic oxidation (PEO) surface was created by varying the DC voltage. The oxidation layer of coating was measured using phase analysis by X-ray diffraction. The microstructural morphology was observed using a scanning electron microscopy. Coating layer and the concentration of elements were investigated using the energy dispersive X-ray spectra. Results: The MgO XRD peak was increased as the voltage increased, and the density of the surface oxide film was also increased. The changes in the composition of the EDS also showed a good agreement. Conclusions: The compound oxide crystallization of PEO oxide film layer was done by increasing formation of MgO as the voltage increased. The treatment at 65V and 60 sec showed the best results at surface state, contact angles and salt spray test.

목적: 이 연구 목적은 가공한 마그네슘 합금 AZ31 안경테를 plasma electrolytic oxidation(PEO) 표면 처리 후 표면특성에 대하여 조사하는 것이다. 방법: Plasma electrolytic oxidation(PEO) 표면 처리는 DC 전압을 변화시키며 처리하였고, 피막의 상 분석은 X-ray 회절기로 측정하였고, 형태학적 미세구조는 주사전자현미경로 관찰하였다. 그리고 피막층에 존재하는 원소의 농도를 에너지 분산 X-선 스펙트럼으로 조사하였다. 결과: PEO 처리시 전압이 증가함에 따라 XRD 측정 결과 MgO 피크가 증가하였으며, SEM 사진에서는 표면의 산화피막이 조밀하게 생기는 것을 확인 할 수 있었다. 그리고 EDS에서 성분의 변화도 일치함을 보여주었다. 결론: PEO 산화피막층은 전압이 증가 할수록 MgO 화합물의 형성이 점점 증가하기 때문에 산화막의 결정화가 진행되며, 65V에 60초 처리 시 표면상태, 접촉각, 내식성 시험에서 가장 좋은 결과를 보여 주었다.

Keywords

References

  1. 대한안경사협회, "2008년 전국 안경사용실태 조사 보고서", 월간 안경계, 한국, 2008년 6월호(통권279호), pp.139-153(2008.06.10).
  2. Mordike B. L. and Ebert T., "Magnesium properties-applications-potential", Materials Science and Engineering, A302:37-45(2001).
  3. Wang L., Chen L., Yan Z., Wang H., and Peng J., "Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy", Journal of Alloys and Compounds, 480:469-474(2009). https://doi.org/10.1016/j.jallcom.2009.01.102
  4. Arrabal R., Matykina E., Hashimoto T., Skeldon P., and Thompson G. E., "Characterization of AC PEO coatings on magnesium alloys", Surface and Coatings Technology, 203(16)2207-2220(2009). https://doi.org/10.1016/j.surfcoat.2009.02.011
  5. Yerokhin A. L., Nie X., Leyland A., Matthews A., and Dowey S. J., "Plasma electrolysis for surface engineering", Surface and Coatings Technology, 122:73-93(1999). https://doi.org/10.1016/S0257-8972(99)00441-7
  6. Wei C. B., Tian X. B., Yang S. Q., Wang X. B., Fu K. Y., and Chu P. K., "Anode current effects in plasma electrolytic oxidation", Surface and Coatings Technology, 201:5021-5024(2007). https://doi.org/10.1016/j.surfcoat.2006.07.103
  7. Emley E. F., "Principles of Magnesium Technology", Oxford, New York, pp. 107-121(1966).
  8. Guo H. F., An M. Z., Huo H. B., Xu S., and Wu L. J., "Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions", Applied Surface Science, 252:7911-7916(2006). https://doi.org/10.1016/j.apsusc.2005.09.067