• Title/Summary/Keyword: Oxi-nitriding

Search Result 3, Processing Time 0.017 seconds

Analysis of Heat Transfer Performance of Oxi-nitriding Surface during Droplet Evaporation (산질화 표면에서의 액적 증발 열전달 성능 분석)

  • Kim, Dae Yun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.203-208
    • /
    • 2019
  • In general, the oxi-nitriding method is well known as such a surface treatment way for substantial enhancement in corrosion resistance, even comparable to that of titanium. However, there are still lacks of information on thermal performance of the oxi-nitriding surface being of additional compound layers on the base substrate. Above all, the quantitative measurement of its thermal performance still was not evaluated yet. Thus, the present study experimentally measures the thermal resistance of the oxi-nitriding surface during droplet evaporation and then estimates heat transfer performance with the use of the onedimensional heat transfer model in vertical direction. From the experimental results, it is found that the total evaporation time slightly increased with the thermal resistance caused by the oxi-nitriding layer, showing a maximum difference of approximately 20% with that of the bare surface. Although the heat transfer performance of oxi-nitriding surface became slightly lower than that of the bare surface, the oxi-nitriding surface exhibits much better heat transfer performance compared to titanium.

Evaporative Heat Transfer Characteristics of Droplet on Oxi-nitriding Surface (산질화 표면에서 액적의 증발열전달 특성)

  • Kim, Dae Yun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.53-57
    • /
    • 2016
  • The present study aims to experimentally investigate the evaporative heat transfer characteristics of Oxi-nitriding SPCC surface. Moreover, the heat transfer coefficient was examined with respect to surface temperature during droplet evaporation. In fact, the nitriding surface showed significant enhancement for anticorrosion performance compared to bare SPCC surface but the thermal resistance also increased due to the formation of compound layer. From the experimental results, the evaporative behavior of sessile droplet on nitriding surface showed similar tendency with the bare surface. Total evaporation time of sessile droplet on the nitriding surface was delayed less than 5%. The difference in heat transfer coefficient increased with the surface temperature, and the maximum difference was estimated to be around 11% at $80^{\circ}C$ surface. Thus, this nitriding surface treatment method could be useful for seawater heat exchanger industries.

A Study on the Corrosion Resistance of Free Cutting Steels after Oxy-Nitriding (진공산질화기술에 의한 쾌삭강의 내부식성 향상기술)

  • Moon, Kyoung Il;Kim, Sang Gweon;Kim, Sung Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.2
    • /
    • pp.90-95
    • /
    • 2006
  • Nitriding or carburizing of carbon steels results in good mechanical properties such as high surface hardness and wear resistance but it has no affection on the corrosion resistance. Corrosion properties of nitriding and carburizing steels could be deteriorated. So, recently, there have been great demand for oxi-nitriding to enhance both mechanical properties and corrosion resistance. In this study, the corrosion resistance of carbon steel, S35C, and free cutting steel, SUM222, are prepared by vacuum nitriding and vacuum post-oxidation were compared with those treated by nitriding. After vacuum post-oxidation, $5{\mu}m$ oxide layer was formed on the nitride layer with $20{\sim}30{\mu}m$ depth. Potentio-dynamic polarization curve in corrosion test showed that the corrosion potential after post oxidation was increased from 200 mV to 800 mV in S35C and from 600 mV to 1200 mV in SUM222. SEM analyses showed that pores was increased and surface roughness became rougher with post oxidation. However, the formation of $Fe_3O_4$ resulted in the enhanced corrosion resistance of steels.