Browse > Article
http://dx.doi.org/10.15435/JILASSKR.2019.24.4.203

Analysis of Heat Transfer Performance of Oxi-nitriding Surface during Droplet Evaporation  

Kim, Dae Yun (중앙대학교 기계공학부)
Lee, Seong Hyuk (중앙대학교 기계공학부)
Publication Information
Journal of ILASS-Korea / v.24, no.4, 2019 , pp. 203-208 More about this Journal
Abstract
In general, the oxi-nitriding method is well known as such a surface treatment way for substantial enhancement in corrosion resistance, even comparable to that of titanium. However, there are still lacks of information on thermal performance of the oxi-nitriding surface being of additional compound layers on the base substrate. Above all, the quantitative measurement of its thermal performance still was not evaluated yet. Thus, the present study experimentally measures the thermal resistance of the oxi-nitriding surface during droplet evaporation and then estimates heat transfer performance with the use of the onedimensional heat transfer model in vertical direction. From the experimental results, it is found that the total evaporation time slightly increased with the thermal resistance caused by the oxi-nitriding layer, showing a maximum difference of approximately 20% with that of the bare surface. Although the heat transfer performance of oxi-nitriding surface became slightly lower than that of the bare surface, the oxi-nitriding surface exhibits much better heat transfer performance compared to titanium.
Keywords
Droplet evaporation; Heat transfer; Oxi-nitriding; Corrosion resistance; Thermal resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen, G. H. Mckinley, "A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on nonwetting textured surfaces," Journal of Colloid Interface Science, Vol. 339, No.1, 2009, pp. 208-216.   DOI
2 J. W. Gibbs, H. A. Bumstead, R. G. Van Name, The scientific papers of J. Willard Gibbs, Longmans, Green and Co., New York, 1906.
3 V. P. Carey, Liquid-vapor phase-change phenomena, Taylor & Francis Group, LLC, New York, 2008.
4 S. Kim, K. J. Kim, "Dropwise condensation modeling suitable for superhydrophobic surfaces," ASME J. Heat Transfer, Vol. 133, No. 8, 2011, pp. 081502.   DOI
5 M. A. J. Somers, B. J. Kooi, L. Maldzinski, E. J. Mittemeijer, A. A. Van der horst, A. M. Van der Kraan, N. M. Van der pers, "Thermodynamics and long-range order of interstitials in an h.c.p. lattice: nitrogen in ${\varepsilon}$-Fe2N1-z", Acta Materialia, Vol. 45, 1997, pp. 2013-2025.   DOI
6 E. J. Mittemeijer, M. A. J. Somers, "Thermodynamics, kinetics, and process control of nitriding", Surface Engineering, Vol. 13, No. 6, 1997, pp. 483-497.   DOI
7 K. Funatani, "Heat treatment of automotive components: current status and future trends", Transactions of the Indian Institute of Metals, Vol. 57, No. 4, 2004, pp. 381-396.
8 W. P. Tong, N. R. Tao, Z. B. Wang, J. Lu, K. Lu, "Nitriding iron at lower temperatures", Science, Vol. 299, No. 5607, 2003, pp. 686-688.   DOI
9 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey, "Plasma electrolysis for surface engineering", Surface and Coatings Technology, Vol. 122 No. 2-3, 1999, pp. 73-93.   DOI
10 M. Arai, H. Ochiai, T. Suidzu, "A novel low-thermal-conductivity plasma-sprayed thermal barrier coating controlled by large pores", Surface and Coatings Technology, Vol. 285, 2016, pp. 120-127.   DOI
11 R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, "Contact line deposits in an evaporating drop", Physical Review E, Vol. 62, No. 1, 2000, pp. 756-765.   DOI
12 S. S. Akhtar, A. A. Abubakar, A. F. M. Arif, "Prediction of residual stresses during gas nitriding of H13 steels using phase field approach", Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 138, No. 1, 2016, pp. 011008.   DOI
13 M. N. Rahaman, J. R. Gross, R. E. Dutton, H. Wang, "Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating application", Acta Materialia, Vol. 54, 2006, pp. 1615-1621.   DOI
14 D. H. Shin, C. K. Choi, Y. T. Kang, S. H. Lee, "Local aggregation characteristics of a nanofluid droplet during evaporation", International Journal of Heat and Mass Transfer, Vol. 72, 2014, pp. 336-344.   DOI
15 H. Hu and R. G. Larson, "Evaporation of a sessile droplet on a substrate", Journal of Physical Chemistry B, Vol. 106, No. 6, 2002, pp. 1334-1344.   DOI
16 R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops", Nature, Vol. 389, 1997, pp. 827-829.   DOI
17 J. M. Stauber, S. K. Wilson, B. R. Duffy, "Evaporation of droplets on strongly hydrophobic substrates", Langmuir, Vol. 31, No. 12, 2015, pp. 3653-3660.   DOI
18 M. E. R. Shanahan, K. Sefiane, "Kinetics of triple line motion during evaporation", Contact Angle, Wettability and Adhesion, 6th edition, 2009, pp. 19-31.
19 R. Enright, N. Miljkovic, N. Dou, Y. Nam, E.N. Wang, "Condensation on superhydrophobic copper oxide nanostructures", Journal of Heat Transfer, Vol. 135, 2013, pp. 091304.   DOI