DOI QR코드

DOI QR Code

Evaporative Heat Transfer Characteristics of Droplet on Oxi-nitriding Surface

산질화 표면에서 액적의 증발열전달 특성

  • Received : 2016.02.29
  • Accepted : 2016.03.15
  • Published : 2016.03.31

Abstract

The present study aims to experimentally investigate the evaporative heat transfer characteristics of Oxi-nitriding SPCC surface. Moreover, the heat transfer coefficient was examined with respect to surface temperature during droplet evaporation. In fact, the nitriding surface showed significant enhancement for anticorrosion performance compared to bare SPCC surface but the thermal resistance also increased due to the formation of compound layer. From the experimental results, the evaporative behavior of sessile droplet on nitriding surface showed similar tendency with the bare surface. Total evaporation time of sessile droplet on the nitriding surface was delayed less than 5%. The difference in heat transfer coefficient increased with the surface temperature, and the maximum difference was estimated to be around 11% at $80^{\circ}C$ surface. Thus, this nitriding surface treatment method could be useful for seawater heat exchanger industries.

Keywords

References

  1. K. Funatani, "Heat treatment of automotive components : current status and future trends", Trans. Indian Inst. Met. Vol. 57, No. 4, 2004, pp. 381-396.
  2. M. A. J. Somers, B. J. Kooi, L. Maldzinski, E. J. Mittemeijer, A. A. Van der horst, A. M. Van der Kraan and N. M. Van der pers, "Thermodynamics and long-range order of interstitials in an h.c.p. lattice : nitrogen in ${\varepsilon}-Fe_2N_{1-z}$", Acta Mater. Vol. 45, No. 5, 1997, pp. 2013-2025. https://doi.org/10.1016/S1359-6454(96)00307-2
  3. E. J. Mittemeijer and M. A. J. Somers, "Thermodynamics, kinetics, and process control of nitriding", Surface Engineering, Vol. 13, No. 6, 1997, pp. 483-497. https://doi.org/10.1179/sur.1997.13.6.483
  4. M. Arai, H. Ochiai and T. Suidzu, "A novel low-thermal-conductivity plasma-sprayed thermal barrier coating controlled by large pores", Surface and Coatings Technology, Vol. 285, 2016, pp. 120-127. https://doi.org/10.1016/j.surfcoat.2015.11.022
  5. M. N. Rahaman, J. R. Gross, R. E. Dutton and H. Wang, "Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating application, Acta Mater. 54, 2006, pp. 1615-1621. https://doi.org/10.1016/j.actamat.2005.11.033
  6. D. H. Shin, C. K. Choi, Y. T. Kang and S. H. Lee, "Local aggregation characteristics of a nanofluid droplet during evaporation", International Journal of Heat and Mass Transfer, Vol. 72, 2014, pp. 336-344. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.023
  7. 문주현, 이상민, 정정열, 이성혁, "홀 패턴 텍스쳐 표면에서 충돌하는 단일 액적의 젖음 특성", 한국액체미립화학회지, Vol. 20, No. 3, 2015, pp. 181-186.
  8. 김으뜸, 박인한, 배녹호, 강보선, "고온벽과 충돌하는 나노유체 액적 거동에 관한 연구", 한국액체미립화학회지, Vol. 20, No. 1, 2015, pp. 7-13.
  9. 김대윤, 정정열, 이성혁, "비등점의 가열 표면에서 나노유체 액적의 증발 특성", 한국액체미립화학회지, Vol. 20, No. 4, 2015, pp. 236-240.
  10. Y. C. Kim, "Evaporation of nanofluid droplet on heated surface", Advances in Mechanical Engineering, Vol. 7, No. 4, 2015 pp. 1-8.
  11. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, "Contact line deposits in an evaporating drop", Physical Review E, Vol. 62, No. 1, 2000, pp. 756-765. https://doi.org/10.1103/PhysRevE.62.756
  12. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops", Nature, Vol. 389, 1997, pp. 827-829. https://doi.org/10.1038/39827
  13. J. M. Stauber, S. K. Wilson and B. R. Duffy, "Evaporation of droplets on strongly hydrophobic substrates", Lanmuir, Vol. 31, No. 12, 2015, pp. 3653-3660. https://doi.org/10.1021/acs.langmuir.5b00286
  14. M. E. R. Shanahan and K. Sefiane, "Kinetics of triple line motion during evaporation", Contact Angle, Wettability and Adhesion, 6th edition, 2009, pp.19-31.
  15. 김영찬, "가열 표면에서 액적의 증발열전달에 관한 실험적 연구", 한국액체미립화학회지, Vol. 19, No. 1, 2014, pp. 15-18.