• Title/Summary/Keyword: Overlapping method

Search Result 629, Processing Time 0.025 seconds

Steganographic Method Based on Three Directional Embedding (세 방향 자료 은닉이 가능한 이미지 스테가노그래픽기법 연구)

  • Jung, Ki-Hyun;Kim, In-Taek;Kim, Jae-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • A steganographic method using three directional data embedding for gray images is presented in this paper. Cover image is divided into non-overlapping $2\times2$ sub-blocks and the basis pixel is selected to calculate the three different values of each sub-block. Difference values are replaced by embedding the number of secret bits that is referenced by the range table. For the three pixel pairs in the sub-block, the optimal pixel adjustment is preceded to reduce the distortion of visual quality. The experimental results show that the proposed method achieves a good visual quality and high capacity.

MULTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR 3D-PROBLEM

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.33-44
    • /
    • 2015
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. Two-dimensional implementation was presented in [8]. In this paper, we present an implementation for three-dimensional problem.

DNA Coding Method for Evolution of Developmental Model (발생모델의 진화를 위한 DNA 코딩방법)

  • 심귀보;이동욱
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.464-467
    • /
    • 1999
  • Rapid progress in the modeling of biological structures and simulation of their development has occurred over the last few years. Cellular automata (CA) and Lindenmayer-system(L-system) are the representative models of development/morphogenesis of multicellular organism. L-system is applied to the visualization of biological plant. Also, CA are applied to the study of artificial life and to the construction of an artificial brain. To design the L-system and CA automatically, we make this model evolve. It is necessary to code the developmental rules for evolution. In this paper, we propose a DNA coding method for evolution the models of development/morphogenesis of biological multicellular organisms. DNA coding has the redundancy and overlapping of gene and is apt for the representation of the rule. In this paper, we propose the DNA coding method of CA and L-system.

  • PDF

A Quantizer Reconstruction Level Control Method for Block Artifact Reduction in DCT Image Coding (양자화 재생레벨 조정을 통한 DCT 영상 코오딩에서의 블록화 현상 감소 방법)

  • 김종훈;황찬식;심영석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.318-326
    • /
    • 1991
  • A Quantizer reconstruction level control method for block artifact reduction in DCT image coding is described. In our scheme, quantizer reconstruction level control is obtained by adding quantization level step size to the optimum quantization level in the direction of reducing the block artifact by minimizing the mean square error(MSE) and error difference(EDF) distribution in boundary without the other additional bits. In simulation results, although the performance in terms of signal to noise ratio is degraded by a little amount, mean square of error difference at block boundary and mean square error having relation block artifact is greatly reduced. Subjective image qualities are improved compared with other block artifact reduction method such as postprocessing by filtering and trasform coding by block overlapping. But the addition calculations of 1-dimensional DCT become to be more necessary to coding process for determining the reconstruction level.

  • PDF

Fast Method to Calculate an Area of Severity Considering Multiple Sensitive Loads (다수의 민감 부하를 고려한 신속한 가혹지역 계산 방법)

  • Park, Sang-Ho;Lee, Kyebyung;Kim, Kern-Joong;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1641-1646
    • /
    • 2017
  • This paper presents a fast method to identify an area of severity which is a network area leading to voltage sags at multiple sensitive load points, simultaneously. To assess voltage sag performance considering various sensitive loads, it is need to determine an area of severity for the load points. The area of severity can be calculated by overlapping areas of vulnerability for each sensitive load. However, as the number of sensitive loads increases, computational complexity and time for determining an area of severity are highly increased. In this paper, an efficient scheme based on line division is described. The proposed method is useful for identifying an area of severity and assessing voltage sag performance considering multiple loads together.

Robust Motion Compensated Frame Interpolation Using Weight-Overlapped Block Motion Compensation with Variable Block Sizes to Reduce LCD Motion Blurs

  • Lee, Jichan;Choi, Jin Hyuk;Lee, Daeho
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.537-543
    • /
    • 2015
  • Liquid crystal displays (LCDs) have slow responses, so motion blurs are often perceived in fast moving scenes. To reduce this motion blur, we propose a novel method of robust motion compensated frame interpolation (MCFI) based on bidirectional motion estimation (BME) and weight-overlapped block motion compensation (WOBMC) with variable block sizes. In most MCFI methods, a static block size is used, so some block artefacts and motion blurs are observed. However, the proposed method adjusts motion block sizes and search ranges by comparing matching scores, so the precise motion vectors can be estimated in accordance with motions. In the MCFI, overlapping ranges for WOBMC are also determined by adjusted block sizes, so the accurate MCFI can be performed. In the experimental results, the proposed method strongly reduced motion blurs arisen from large motions, and yielded interpolated images with high visual performance and peak signal-to-noise ratio (PSNR).

Novel Peak-to-Average Power Ratio Reduction Methods for OFDM/OQAM Systems

  • Sandeep, Vangala;Anuradha, Sundru
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1124-1134
    • /
    • 2016
  • The tone reservation method is one of the most effective pre-distortion methods for peak-to-average power ratio reduction in orthogonal frequency division multiplexing (OFDM) systems. Its direct application to OFDM systems with offset quadrature amplitude modulation (OQAM) is, however, not effective. In this paper, two novel TR-based methods are proposed, specifically designed for OFDM/OQAM systems by taking into consideration the overlapping nature of OQAM signals. These two methods have different approaches to the generation of the peak-cancelling signal. The first one (overlapped scaling tone reservation) generates the peak-cancelling signal using a least squares approximation algorithm with possible adjacent symbol overlap; the second one (multi-kernel tone reservation) generates the peak-cancelling signal by using multiple impulse-like time domain kernels. It is shown by simulation that, when used in OFDM/OQAM systems, the proposed methods can provide better performance than the direct application of the existing controlled clipping tone reservation method, and even outperform the multi-block tone reservation method.

Isolated word recognition using the SOFM-HMM and the Inertia (관성과 SOFM-HMM을 이용한 고립단어 인식)

  • 윤석현;정광우;홍광석;박병철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.17-24
    • /
    • 1994
  • This paper is a study on Korean word recognition and suggest the method that stabilizes the state-transition in the HMM by applying the `inertia' to the feature vector sequences. In order to reduce the quantized distortion considering probability distribution of input vectors, we used SOFM, an unsupervised learning method, as a vector quantizer, By applying inertia to the feature vector sequences, the overlapping of probability distributions for the response path of each word on the self organizing feature map can be reduced and the state-transition in the Hmm can be Stabilized. In order to evaluate the performance of the method, we carried out experiments for 50 DDD area names. The results showed that applying inertia to the feature vector sequence improved the recognition rate by 7.4% and can make more HMMs available without reducing the recognition rate for the SOFM having the fixed number of neuron.

  • PDF

TWO-LAYER MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.101-124
    • /
    • 2002
  • The convergence rate of a numerical procedure barred on Schwarz Alternating Method (SAM) for solving elliptic boundary value problems (BVP's) depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It hee been observed that the Robin condition(mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. Since the convergence rate is very sensitive to the parameter, Tang[17] suggested another interface condition called over-determined interface condition. Based on the over-determined interface condition, we formulate the two-layer multi-parameterized SAM. For the SAM and the one-dimensional elliptic model BVP's, we determine analytically the optimal values of the parameters. For the two-dimensional elliptic BVP's , we also formulate the two-layer multi-parameterized SAM and suggest a choice of multi-parameter to produce good convergence rate .

Iterative global-local approach to consider the local effects in dynamic analysis of beams

  • Erkmen, R. Emre;Afnani, Ashkan
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.501-522
    • /
    • 2017
  • This paper introduces a numerical procedure to incorporate elasto-plastic local deformation effects in the dynamic analysis of beams. The appealing feature is that simple beam type finite elements can be used for the global model which needs not to be altered by the localized elasto-plastic deformations. An overlapping local sophisticated 2D membrane model replaces the internal forces of the beam elements in the predefined region where the localized deformations take place. An iterative coupling technique is used to perform this replacement. Comparisons with full membrane analysis are provided in order to illustrate the accuracy and efficiency of the method developed herein. In this study, the membrane formulation is able to capture the elasto-plastic material behaviour based on the von Misses yield criterion and the associated flow rule for plane stress. The Newmark time integration method is adopted for the step-by-step dynamic analysis.