• Title/Summary/Keyword: Overhead transmission lines

Search Result 179, Processing Time 0.259 seconds

Hardness Profiles of Porcelain Insulators by Climate Changes (기후 변화에 따른 자기 애자의 시멘트 경도 변화)

  • Lee, Joohyun;Kim, Hong-Sik;Kim, Joondong;Choi, In-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.24-28
    • /
    • 2018
  • Insulators used in overhead transmission lines are continuously exposed to a number of mechanical and electrical stresses owing to external environmental factors, resulting in corrosion, reduction in durability, and deterioration. Widely used porcelain insulators are fabricated with cement and porcelain and are especially common in Korea. Changes in the hardness and chemical reactivity of the cement increase the leakage and fault currents and increase the possibility of flashover due to insulation breakdown. Therefore, it is important to evaluate the durability and defects of porcelain insulators. Studies on the reliability of various evaluation methods are needed to prevent accidents by accurately determining the replacement timing and potential defects in porcelain insulators. In this study, the hardness of the cement part of the porcelain insulator was measured using the Vickers hardness test and its composition was analyzed by energy dispersive spectroscopy and X-ray diffraction analysis. The performance of the insulators was compared in two different regions with varying climatic conditions. This study presents an evaluation method of the defects in porcelain insulators by measuring humidity, which can also be used to assess the reliability of the insulators.

Exposure Assessment of Extremely Low Frequency Magnetic Fields by variable exposure matrices for the Selected Primary Schoolchildren Living Nearby and Away from a Overhead Transmission Power Line (다양한 노출 매트릭스를 통한 송전선로 주변과 비 주변 거주 초등학교 학생의 극저주파 자기장 노출량 평가에 관한 연구)

  • Kim, Yoon Shin;Hyun, Youn Joo;Choi, Seong Ho;Lee, Chul Min;Roh, Young Man;Cho, Yong Sung;Hong, Seung Cheol
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.4
    • /
    • pp.334-345
    • /
    • 2006
  • The objectives of this study were to analyze and compare 24 hrs personal exposure levels of MF at microenvironments such as home, school, educational institute, internet pc game room, transportation, and other places according to time activity patterns using various metrics for children attending the primary schools located near and away from the power lines, and to characterize the major microenvironments and impact factors attributed personal exposure level. The study was carried out for 44 children attending a primary school away from the lines(school A) and 125 children attending a school away from 154 kV power lines(school B), all who aged 12 years and were 6 grade, from July 2003 to December 2003. All participants filled in a questionnaire about characteristics, residence, use of electrical appliances and others. Children wore a small satchel in which EMDEX II and Lite (Enertech, Co. Ltd) and a diary of activity list for period of registration in 20 minutes blocks. All statistical calculations were made with the SAS System, Releas 6.12. The summary of results was presented below. First, about the characteristics of subjects, there no differences between two groups. The subject almost spent about 56 % of their time at home and about 20~25 % of their time at school. Fifty percent of children spent 2 hours at private educational institutes. Second, the personal exposure measurements of children in school B was statistically higher than those of children in school A by various metrics such as arithmetic mean, geometric mean, percentile(5, 25, 50, 75, 95), maximum, rate of change metric, constant field metric. The arithmetic and geometric mean magnetic fields during the time the children were at school B were 0.98 and $0.86{\mu}T$ and were about 23 times higher than those of children were at school A. In conclusion, the significant major determinants of personal exposure level is the distance from the power line to microenvironments.

A Study on Three-phase Imbalance of a Power Transmission Line due to Installation of a Passive Loop Conductor (수동루프에 의한 송전선로 상불평형 발생에 관한 연구)

  • 김종형;신명철;최상열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.31-38
    • /
    • 2003
  • Among mitigation techniques for electric and magnetic field (EMF) from an overhead transmission line a passive loop is a way that can be cheap and easily installed on the existing towers and have a satisfactory effect as well. However current induced in the passive loop causes transmission power loss and the phase imbalance increases since geometrical asymmetry of the transmission lines becomes larger. So in order to evaluate the power loss and the phase imbalance due to a passive loop, this paper represent a 345[kV] 1-circuit flat type transmission line as asymmetrical 3-phase distributed parameter line model where the effect of a passive loop is embedded in the line parameters, and then formulates differential equations. By solving these equations voltages and currents of each phase at receiving end become known. We find out that power losses occur differently at each phase and positive sequence component decreases at receiving end while negative sequence component increase. In general phase imbalance due to a passive loop is slight, but it increases in proportional to the induced current and length of section where the passive loop is installed. Thus the phase imbalance should be included in terms of cost for introducing a passive loop.

DC Electric Field Characteristics considering Thermal Effect for HVDC Slip-on Type Outdoor Termination (HVDC 슬립 온형 기중 종단접속함에 대한 열 영향 반영 DC 전계 특성 평가)

  • Kwon, Ik-Soo;Hwang, Jae-Sang;Koo, Jae-Hong;Sakamoto, Kuniaki;Lee, Bang-Wook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • A outdoor termination installed at the outdoor substation is required to connect undergroud cables and overhead transmission lines. The joint box for AC transmission system is already developed and widely used to interconnect overhead and undergroud systems. But the development of the joint box for DC transmission system was only introduced from China and Japan, but theire developemnt staus and core technologies were not fully reported. In order to implement HVDC systems connecting ovehead transmission lines and undergroud cables, a outdoor termination should be developed, but the detailed specifications and information of this device were not reported. It is estimated that the development of the joint box for DC environment has some technical obstacles including insulating materials, electric field mitigation, thermal temperature rise, and space charge accumuations. Among this, the most important one is the DC elctrical insualtion design. Therefore, in order to investigate the DC elctrical insualton design of outdoor termination, the design of AC slip-on type outdoor termination is reffered, and DC electric field analysis performed to verify the possiblity of application of AC joint box into DC joint box. Especially for DC electric field analysis, temperature rise of insualting materials of a joint box was considered, because the conductivity of materials could be changed due to temperature rise. Furthermore, DC electric field analysis considering transinet state, and polarity reversal state were also investigated to verify which state is the most severe condition for the DC joint box. From the simualtion resulsts, it was shown that the value and the position of maximum electric field was obtained comparing AC state, DC state without temperaure rise, and DC state with temperaure rise. And it was confimred that severe DC electric field was observed considing temperaure rise. Finally, in order to reduce DC eletric field intensifation, different configuration of the joint box was applied and it was not possible to obtain satisfactory results. It means that the slight change of configuration of AC joint box was not the suitable soluton for DC joint box. It is essential to establish novel DC insulaton design skills and method for DC joint box to commercialze this product in the near future.

Study on Standardization of the Environmental Impact Evaluation Method of Extremely Low Frequency Magnetic Fields near High Voltage Overhead Transmission Lines (고압 가공송전선로의 극저주파자기장 환경영향평가 방법 표준화에 관한 연구)

  • Park, Sung-Ae;Jung, Joonsig;Choi, Taebong;Jeong, Minjoo;Kim, Bu-Kyung;Lee, Jongchun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.658-673
    • /
    • 2018
  • Social conflicts with extremely low frequency magnetic field(ELF-MF) exposures are expected to exacerbate due to continued increase in electric power demand and construction of high voltage transmission lines(HVTL). However, in current environmental impact assessment(EIA) act, specific guidelines have not been included concretely about EIA of ELF-MF. Therefore, this study conducted a standardization study on EIA method through case analysis, field measurement, and expert consultation of the EIA for the ELF-MF near HVTL which is the main cause of exposures. The status of the EIA of the ELF-MF and the problem to be improved are derived and the EIA method which can solve it is suggested. The main contents of the study is that the physical characteristics of the ELF-MF affected by distance and powerload should be considered at all stages of EIA(survey of the current situation - Prediction of the impacts - preparation of mitigation plan ? post EIA planning). Based on this study, we also suggested the 'Measurement method for extremely low frequency magnetic field on transmission line' and 'Table for extremely low frequency magnetic field measurement record on transmission line'. The results of this study can be applied to the EIA that minimizes the damage and conflict to the construction of transmission line and derives rational measures at the present time when the human hazard to long term exposure of the ELF-MF is unclear.

Effect of Porcelain/Polymer Interface on the Microstructure, Insulation Characteristics and Electrical Field Distribution of Hybrid Insulators (자기재/폴리머 계면이 하이브리드 애자의 미세구조, 절연특성과 전계분포에 미치는 영향)

  • Cho, Jun-Young;Kim, Woo-Seok;An, Ho-Sung;An, Hee-Sung;Kim, Tae-wan;Lim, Yun-Seog;Bae, Sung-Hwan;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.558-565
    • /
    • 2017
  • Hybrid insulators that have the advantages of both porcelain (high mechanical strength and chemical stability) as well as polymer (light weight and high resistance to pollution) insulators, can be used in place of individual porcelain and polymer insulators that are used for both mechanical support as well as electrical insulation of overhead power transmission lines. The most significant feature of hybrid insulators is the presence of porcelain/polymer interfaces where the porcelain and polymer are physically bonded. Individual porcelain and polymer insulators do not have such porcelain/polymer interfaces. Although the interface is expected to affect the mechanical/electrical properties of the hybrid insulator, systematic studies of the adhesion properties at the porcelain/polymer interface and the effect of the interface on the insulation characteristics and electric field distribution of the hybrid insulator have not been reported. In this study, we fabricated small hybrid insulator specimens with various types of interfaces and investigated the effect of the porcelain/polymer interface on the microstructure, insulating characteristics, and electric field distribution of the hybrid insulators. It was observed that the porcelain/polymer interface of the hybrid insulator does not have a significant effect on the insulating characteristics and electric field distribution, and the hybrid insulator can exhibit electrical insulating properties that are similar or superior to those of individual porcelain and polymer insulators.

Testing of Common Electromagnetic Environments for Risk of Interference with Cardiac Pacemaker Function

  • Tiikkaja, Maria;Aro, Aapo L.;Alanko, Tommi;Lindholm, Harri;Sistonen, Heli;Hartikainen, Juha E.K.;Toivonen, Lauri;Juutilainen, Jukka;Hietanen, Maila
    • Safety and Health at Work
    • /
    • v.4 no.3
    • /
    • pp.156-159
    • /
    • 2013
  • Background: Cardiac pacemakers are known to be susceptible to strong electromagnetic fields (EMFs). This in vivo study investigated occurrence of electromagnetic interference with pacemakers caused by common environmental sources of EMFs. Methods: Eleven volunteers with a pacemaker were exposed to EMFs produced by two mobile phone base stations, an electrically powered commuter train, and an overhead high voltage transmission lines. All the pacemakers were programmed in normal clinically selected settings with bipolar sensing and pacing configurations. Results: None of the pacemakers experienced interference in any of these exposure situations. However, often it is not clear whether or not strong EMFs exist in various work environments, and hence an individual risk assessment is needed. Conclusions: Modern pacemakers are well shielded against external EMFs, and workers with a pacemaker can most often return to their previous work after having a pacemaker implanted. However, an appropriate risk assessment is still necessary after the implantation of a pacemaker, a change of its generator, or major modification of its programming settings.

Health Status of Electric Utility Workers Exposed to Extremely Low Frequency Electromagnetic Field (ELF-EMF) (근로자들의 극저주파 전자파 노출 수준에 따른 인체 영향 평가)

  • Park, Kyoung-Ho;Ahn, Yong-Ho;Kim, Tai-Jeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.3
    • /
    • pp.220-227
    • /
    • 2005
  • Recently, the use of an electrical apparatus has brought up concerns of health risks from exposure to electromagnetic fields. EMF is composed of electric fields and magnetic fields. Heavy exposure to EMF can occur only in the vicinity of high-voltage overhead transmission lines, close to transformers and underground cables, and also close to large electrical machinery. In this thesis I have investigated the hypothesis of the correlation between occupational exposure to ELF-EMF and the risks of leukemia, anemia, cancer. Therefore, the aim of this study is to investigate whether or not ELF-EMF emitted from electric power stations and transformer substations affect some hematological parameters and tumor markers of electric utility workers. The hematological test results and tumor markers under investigation were similar in the two groups but some of parameters such as RBC, AFP, LDH showed significant difference between the two groups from two sample t-test (p<0.05). The exposure group showed increased LDH level compared to the control group by two sample t-tests. In addition, the abnormal LDH level in the exposure group was observed to be clinically significant by ${\chi}^2$-test. However, the levels of RBC, AFP observed were not clinically significant by ${\chi}^2$-test (p>0.05). These results suggested that ELF-EMF does not affect most blood test parameters except LDH of electric utility workers.

  • PDF

Development of Vertical Separated Tubular Steel Pole (종방향 분할형 관형지지물 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.257-262
    • /
    • 2019
  • Lattice steel towers for overhead transmission lines have been replaced by tubular steel poles due to the visual impact of large and complex shape of truss type. Demand for tubular steel poles consisting of a single frame member continues to grow because of its advantages such as visual minimization, architectural appeal and minimal site consumptions. However, there are some constraints on the transportation and construction. As the diameter of tower base has been enlarged, it may exceed minimum height limit required to pass the tunnel in case of land transportation. Also, in a narrow place where it is not easy to secure the installation areas such as mountainous places, there might be some areas wherein it must secure a wide working space so that large vehicles and working cranes will be allowed to enter. In this paper, we presented a vertical separated tubular steel pole, which is a new type of support that can be implemented for general purpose such as mountainous areas or narrow areas to improve the issues raised by breaking away from the conventional design and fabrication methods. Technical approaches for overcoming the limit of the cross-sectional size is to separate and modularize the cross-section of the tubular steel pole designed with a size that cannot be carried or assembled, and to lighten it with a weight capable of being transported and assembled in a narrow space or mountainous area. As a result of this research, it will be possible to enter small and medium sized vehicles in locations where it is restricted to transport by large-sized vehicles. In the case of mountainous areas, it will be possible to divide it into a weight capable of being carried by a helicopter and it will be easy to adjust and fabricate it with individual modules. Furthermore, in order to break away from the traditional construction method, we proposed the equipment that can be applied to the assembly of Tubular Steel Pole without using a large crane in locations where there is no accessible road or in locations wherein large cranes cannot enter. In particular, this paper shows the movable assembling equipment and some methods that are specialized for vertical separated tubular steel pole consisting of members with reduced weight. The proposed assembly equipment is a device for assembling the body of the Tubular Steel Poles. It will be installed inside the support and the modules can be lifted by using the support itself.