• Title/Summary/Keyword: Overhead line

Search Result 455, Processing Time 0.027 seconds

Analysis on the Induced Lightning Shielding Effect According to the Neutral Wire Installation Structure of a 22.9kV Distribution Line (22.9kV 배전선로 중성선 설치 구조에 따른 유도뢰 차폐효과 분석)

  • Kim, Jeom-Sik;Kim, Do-Young;Park, Yong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • The electricity distribution system in Korea is adopting a multi-grounding system. Protection of this distribution system against lightning is performed by installing overhead ground wires over the high voltage wires, and connecting the overhead ground wires to the ground every 200 m. The ground resistance in this system is limited not to exceed $50\Omega$ and overhead ground wire and neutral wire are multiple parallel lines. Although overhead ground wire and neutral wire are installed in different locations on the same pole, this circuit configuration has duplicated functions of providing a return path for unbalanced currents and protecting the distribution system against induced lightning. Therefore, the purpose of this study is to analyze the induced lightning shielding effect according to the neutral wire installation structure of a 22.9kV distribution line in order to present a new 22.9kV distribution line structure model and characteristics. This study calculated induced lightning voltage by performing numerical analysis when an overhead ground wire is present in the multi-grounding type 22.9kV distribution line structure, and calculated the induced lightning shielding effect based on this calculated induced lightning voltage. In addition, this study proposed and analyzed an improved distribution line model allowing the use of both overhead wire and neutral wire to be installed in the current distribution lines. The result of MATLAB simulation using the conditions applied by Yokoyama showed almost no difference between the induced lightning voltage developed in the current line and that developed in the proposed line. This signifies that shielding the induced lightning voltage through overhead wire makes no difference between current and proposed distribution line structures. That is, this study found that the ground resistance of the overhead wire had an effect on the induced lightning voltage, and that the induced lightning shielding effect of overhead wire is small.

A Study on Crashworthy Characteristics of EMU Carbody for Overhead Line Structure Types (전차선 지지 구조물 형태에 따른 전동차 차체의 충돌안전도 특성 연구)

  • Kim, Jin-Seok;Lee, Hyun-Cheol;Cho, Hyun-Jik;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.381-387
    • /
    • 2007
  • In this paper, crashworthiness of the EMU carbody of Incheon Metro is numerically evaluated against two types of overhead line structures (headspan and portal-type). The material of the EMU carbody is stainless steel (SUS301L), and that of the overhead line structures is the structural steel (SS400). The EMU carbody is analyzed under collision conditions, such as upright side-on impact, side-on roof impact and angled roof impact scenarios, to be collided against the headspan type or the portal type at the speed of 64.4km/h, respectively. It is concluded from the numerical results that the overhead line structures will not do so much harm to the EMU carbody of Incheon Metro for various collisions caused by derailment. Furthermore, the overhead line structure of the portal type is superior to that of the headspan type in the crashworthy point of view.

Dynamic response of an overhead transmission tower-line system to high-speed train-induced wind

  • Zhang, Meng;Liu, Ying;Liu, Hao;Zhao, Guifeng
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.335-353
    • /
    • 2022
  • The current work numerically investigates the transient force and dynamic response of an overhead transmission tower-line structure caused by the passage of a high-speed train (HST). Taking the CRH2C HST and an overhead transmission tower-line structure as the research objects, both an HST-transmission line fluid numerical model and a transmission tower-line structure finite element model are established and validated through comparison with experimental and theoretical data. The transient force and typical dynamic response of the overhead transmission tower-line structure due to HST-induced wind are analyzed. The results show that when the train passes through the overhead transmission tower-line structure, the extreme force on the transmission line is related to the train speed with a significant quadratic function relationship. Once the relative distance from the track is more than 15 m, the train-induced force is small enough to be ignored. The extreme value of the mid-span dynamic response of the transmission line is related to the train speed and span length with a significant linear functional relationship.

Collision Analysis of EMU Carbody against Overhead Line Structure (전차선 지지 구조물에 대한 전동차 차체의 충돌 해석연구)

  • Kim, Jin-Seok;Koo, Jeong-Seo;Kwon, Seok-Jin
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.11-17
    • /
    • 2006
  • In this paper, crashworthiness of EMU carbody against overhead line structure is numerically evaluated. The material of the EMU carbody is made of stainless steel(SS301L). The material of the overhead line structure(a portal-type) is structure steel (SS400). The EMU carbody is numerically analyzed under collision conditions such as upright side-on impact scenario and angled impact scenario to collide against overhead line structure(a portal-type) at 64.6 kph, respectively.

  • PDF

Development of a Measurement System for Contact Force Analysis of Trolley Line (전기철도 전차선 접촉력 측정 및 분석시스템 개발)

  • Kim, In-Chol;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.82-87
    • /
    • 2010
  • A measurement system of contact force between overhead contact line and pantograph of train is developed which measures the contact force by using four sets of full-bridge strain gauges instead of load cells and accelerometers. The sensors are installed on the pan head of pantograph and the measured data from the sensors are transmitted to a server system in the train by way of wireless Lan. This configuration of the measuring system makes it easy to install on the trains without any alteration of train system. The measurement system is applied to KTX on the Kyungbu high speed line, and the measured contact force data shows good agreement with those measured by load cell and accelerometers. The waveform of the contact force between overhead contact line and pantograph contains essential information about their conditions. The proposed measurement system can probe any defects on overhead contact lines with train running at high speed, which will be a powerful solution for the maintenance of long-distance overhead contact lines.

Modelling Voltage Variation at DC Railway Traction Substation using Recursive Least Square Estimation (순환최소자승법을 이용한 직류도시철도 변전소의 가선전압변동 모델링)

  • Bae, Chang-Han
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.534-539
    • /
    • 2015
  • The DC overhead line voltage of an electric railway substation swings depending on the accelerating and regenerative-braking energy of trains, and it deteriorates the energy quality of the electric facility in the DC railway substation and restricts the powering and braking performance of subway trains. Recently, an energy storage system or a regenerative inverter has been introduced into railway traction substations to diminish both the variance of the overhead line voltage and the peak power consumption. In this study, the variance of the overhead line voltage in a DC railway substation is modelled by RC parallel circuits in each feeder, and the RC parameters are estimated using the recursive least mean square (RLMS) scheme. The forgetting factor values for the RLMS are selected using simulated annealing optimization, and the modelling scheme of the overhead line voltage variation is evaluated through raw data measured in a downtown railway substation.

Installation methods of OPGW for 765kV overhead power transmission lines (765kV 가공 송전선로용 OPGW 시설공법)

  • Kwan, Y.G.;Kim, Y.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1641-1643
    • /
    • 1998
  • In recent the maximum voltage of overhead power transmission lines in Korea was upgraded to 765kV. In general a overhead ground wire is installed for protecting overhead power transmission lines from lightning. For the 765kV line, Composite Overhead Ground Wire with Optic Fiber (OPGW) is applied as a overhead ground wire and have a function of the communication line between substations. In this paper, the construction and properties of OPGW, and its installation methods are discribed.

  • PDF

Analysis of Electric field and Ion Characteristics on HVDC Overhead Transmission Line (초고압 직류가공 송전선로에서의 전계 및 이온류 특성분석)

  • Lim, Jae-Seop;Shin, Koo-Yong;Lee, Dong-Il;Ju, Mun-No;Yang, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1638-1643
    • /
    • 2010
  • HVDC is better economic method than HVAC in case of long distance transmission and it is possible to interconnect transmission lines regardless of difference of power frequency. The electrical environment problems of HVDC overhead transmission line are electric field, charged voltage, ion current and so on. For biopolar HVDC lines, most of the ions are directed toward the opposite polarity conductor, but a significant fraction is also directed toward the ground. These problems are major factor to design configuration of HVDC overhead transmission line. Therefore, It is necessary to test an environmental characteristics of HVDC overhead transmission line. In this paper, to assess the ion characteristic of HVDC transmission line, continuous measurements have been done on the biopolar single circuit line with ACSR 480mm2-6 bundle conductors of Gochang HVDC Test line. And then the ion characteristics were analyzed.

Analysis on Installation Condition According to Dynamic Characteristics for Overhead Catenary System (전차선로 동적특성에 따른 설치상태 분석)

  • Park, Young;Lee, Kiwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1605-1609
    • /
    • 2016
  • The measurement of current collection performance between pantograph and contact wire of overhead catenary system is intended to prove the safety of operation and the quality of the current collection system. The results of interaction performance of current collection system are required for approving with commercial operation on railway lines. The methods of interaction performance of current collection system are defined on interactional standards such as IEC 62486 and EN 50317. In this paper, the interaction performance is evaluated by the percentage of arcing on Honam high-speed line and the results are used for adjustment of the overhead catenary line structure. The experimental results in Honam high-speed line confirm that the duration of an arc lasting longer 25 ms between pantograph and contact wire was depended on the conditions of overhead contact line after installation.

The Research into Connecting System for Aerial Bundled Cable in Distribution Line (ABC 배전 접속 시스템에 대한 연구)

  • 이용순;최경선;주종민;이철호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.495-498
    • /
    • 2001
  • The distribution line through which electricity is supplied from substation to customer generally varies by underground line and overhead line. In contrast that the underground line is shielded, the overhead lines do not have the shield layer. To overcome this weak point of the overhead lines, the aerial bundled cable(ABC) connection systems have been developed. The basic concept of the ABC connection system is the application of the underground cable system containing complete shield layer to the overhead cable system. The ABC system is the innovative technologies which enable the prevention of electric shocks, reduction of the maintenance charge and damage of the cable. This paper give a full detail of vertical connection system applied within a country.

  • PDF