• Title/Summary/Keyword: Overburden

Search Result 231, Processing Time 0.026 seconds

Finite Element Analysis on the Behavior of Soyanggang Dam and its Comparison with Observed (소양강(昭陽江)댐의 거동(擧動)에 대한 유한요소해석(有限要素解析)과 실측치(實測値)와의 비교(比較))

  • Kim, Sang Kyu;Lim, Heui Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.141-150
    • /
    • 1987
  • The Soyanggang Dam completed in 1973 was well instrumented during construction period. The measured results for stresses and movements of the embankment have already been published elsewhere, but theoretical analyses have not been made until now. This study intends to analyze the stress and deformation behavior of the embankment numerically which have been subjected to the load of materials during construction and water load during impounding. The constitutive law used for the analyses is hyperbolic model developed by Duncan et al., and a nonlinear incremental finite element analysis simulating its contruction steps is. used in this study. Hyperbolic parameters for each Zone are estimated from literature. The results obtained from the theoretical analyses clearly show deformation characteristics and stress vectors in arbitrary section of the dam. The analytical results ate well agreed with the measured deformations at the maximum cross section, however, there are some discrepancy in horizontal movements and in stresses generated in the core zone. From the numerical analyses and its comparison with the measured values, it is charaterized that relatively large construction settlements occurred in core zone, overburden pressure in the core zone was considerably reduced by arching effect, and tension zones might occur near both abutments because of the large horizontal displacement.

  • PDF

Experimental Evaluation for Static Performance of I-Beam Concrete Slab System (I 형강 합성바닥판의 정적성능 평가)

  • 정영수;박창규;김용곤;이원표
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.430-437
    • /
    • 2001
  • Recently, there have been increased much concerns about repair and rehabilitation works for aged concrete structures. It is in particular known that due to repeated overburden vehicles, there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge superstructure, which can contribute to minimize a traffic congestion during repair and rehabilitation works of aged concrete slab, and can sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, can be manufactured in accordance with the specification in the factory, and be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This research is to investigate mechanical properties of I-beam with punch holes itself, and then to investigate structural properties of assembled I-beam panels through static test, of which result can be utilized for the development of the new constructional method for concrete slab in bridge superstructure.

Evaluating the Policy of Transfer System to Promote a Use of the Busan Subway (지하철 이용 활성화를 위한 환승체계의 정책대안 평가)

  • Jung, Hun-Young;Choi, Chi-Gook
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.27-39
    • /
    • 2004
  • The purpose of this paper presents realistic policy alternative about recent tendency to decrease of subway-users and diminution of use efficiency which are serious problems of Busan Subway. Several policy alternatives have been studied until now, such as subway transfer impedance solution plan, introduction of subway to transfer fare discounting policy, and etc.. But, those policy alternatives are difficult to carried out, because they are less effective and overburden to financial aspect. Therefore, I made use of research on subway utilization to presuppose service improvement, as an alternative, in the transfer fare discounting system between bus and subway which might be powerful influence over subway-users. To verify this proposed study, I took advantage of Stated Preference(SP) where I estimated fare revenue and effects on fluctuation of subway-users with nested logit model based on research results. Suitable alternatives are as follows: First, If municipal government carries out transfer fare discounting policy without shortening in-vehicle time and out-of-vehicle time transfer fare, it is reasonable to discount transfer fare 50% off on the assumption of financial support as much as \6.700 million annually. Secondly, in case of application of multi-factors at a time, transfer fare discounting and in & out vehicle time, it is preferred to have no charge for transfer option with financial support as much as expected income-loss \5,600 million.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

A study on conceptual evaluation of structural stability of room-and-pillar underground space (주방식 지하공간의 구조적 안정성 평가개념 정립에 관한 연구)

  • Lee, Chulho;Chang, Soo-Ho;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.585-597
    • /
    • 2013
  • In this study, in order to evaluate stability of the room-and-pillar underground structure, a series of preliminary numerical analyses were performed. Design concept and procedure of an underground structure for obtaining a space are proposed, which should be different from structural design for the room-and-pillar in mine. With assumed material properties, a series of numerical analyses were performed by varying size ratios of room and pillar and then the failure modes and location at yielding initiation were investigated. From the results, relationship between the ratio of pillar width to the roof span (w/s) and overburden pressure at failure initiation shows a relatively linear relation, and the effect of w/s on structural stability is much more critical than the ratio of pillar width and height (w/H) which is a crucial parameter in design of the room-and-pillar mining. It means that roof tensile failure and shear failure at shoulder and pillar are necessary to be considered together for confirming overall structural stability of the room-and-pillar structure, rather than considering the pillar stability only in mining. Failure modes and location at failure initiation were varied with respect to the ratio of room and pillar widths. Therefore, it is necessary to simultaneously consider stability of both roof span and pillar for design of underground structure by the room-and-pillar method.

Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Wonju, Korea (레일리파 분산을 역산하여 구한 횡파속도를 이용한 원주시의 부지특성)

  • Kim, Chungho;Ali, Abid;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • To reveal shear-wave velocities ($v_s$) and site characterization of Wonju, Korea, Rayleigh waves were recorded at 78 sites of lower altitude using 12 to 24 4.5-Hz vertical geophones for 20 days during the period of February to September 2013. Dispersion curves of the Rayleigh waves obtained by the extended spatial autocorrelation method were inverted using the damped least-squares method to derive $v_s$ models. From these 1-D models, the average $v_s$ to a depth of 30 m ($v_s30$), $v_s$ of weathered rocks, depths to these basement rocks, and average $v_s$ of the overburden layer were derived to be $16.3{\pm}0.7m$, $576{\pm}8m/s$, $290{\pm}7m/s$, and $418{\pm}13m/s$, respectively, in the 95% confidence range. To determine adequate proxies for $v_s30$, we computed correlation coefficients of $v_s30$ with topographic slope (r = 0.46) and elevation (r = 0.43). An empirical linear relationship is presented as a combination of individually estimated $v_s30$ with weighting factors of 0.45, 0.45, and 0.1 for topographic slope, elevation, and mapped lithology, respectively. Due to a weak correlation between $v_s30$ obtained from inversion of dispersion curves and the proxy-based estimation (r = 0.50), however, the relatively large error range should be considered for applications of this relationship.

A Study on the Estimation of In-situ Undrained Shear Strength Using Effective Stress Paths of Reconstituted Sample by Unconfined Compression Test (재구성 시료의 일축압축시험에서 유효응력경로를 이용한 원지반의 비배수 전단강도 추정에 관한 연구)

  • 박성재;오원택;정경환;여주태
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.93-102
    • /
    • 2003
  • Unconfined compression test (UC) has been widely used to determine the undrained shear strength ($c_u$) of clay, because it is convenient and economical. However, UC can not represent the behaviour of in-situ stress condition and the strength obtained by the test is generally underestimated compared to that of triaxial compression, due to no confining pressure. Therefore, a simple and practical method to correct the ($c_u$) for sample disturbance and to be used in geotechnical practice is needed. This study is aimed at proposing the method to estimate in-situ undrained shear strength from UC with suction measurement. The proposed method is based on theoretical shear strength equation of perfect sample (Noorany & Seed, 1965), and effective overburden stress and analysis results ($A_f,\phi'$) of effective stress behaviour by UC are needed for the equation. The shear resistance angle ($\phi'$) can be simply estimated through the result that $K_f$-line slope of the UC is 1.6 times higher than that of triaxial compression test. The result of this study shows that the measured strength by this method is very similar to that of the undrained shear strength by triaxial compression test (CK$_0$UC).

Experimental study on the longitudinal load transfer of a shallow tunnel depending on the deformation tunnel face (II) (얕은 터널의 굴진면 변형에 따른 종방향 하중전이 특성에 대한 실험적 연구(II))

  • Kim, Yang Woon;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.499-509
    • /
    • 2016
  • In recent years, the use of underground spaces becomes more frequent and the demands for urban tunnels are rapidly increasing. The urban tunnels constructed in the ground with a shallow and soft cover might be deformed in various forms on the face, which would lead, the tunnels to behavior 3-dimensionally, which may have a great impact on the longitudinal load transfer. The tunnel face might deform in various forms depending on the construction method, overburden and the heterogeneity of the ground. And accordingly, the type and size of the distribution of the load transferred to the ground adjacent to the tunnel face as well as the form of the loosened ground may appear in various ways depending on the deformation form of the tunnel face. Therefore, in this study was conducted model tests by idealizing the deformation behavior of the tunnel face, that were constant deformation, the maximum deformation on the top and the maximum deformation on the bottom. And the test results were analyzed focusing on the deformation of the face and the longitudinal load transfer at the ground above the tunnel. As results, it turned out that the size and the distribution type of the load, which was transferred to the tunnel as well as the earth pressure on the face were affected by the deformation type of the face. The largest load was transferred to the tunnel when the deformation was in a constant form. Less load was transferred when the maximum deformation on the bottom, and the least load was transferred when the maximum deformation on the top. In addition, it turned out that, if the cover became more shallow, a longitudinal load transfer in the tunnel would limited to the region close to the face; however, if the cover became higher than a certain value, the area of the load transfer would become wider.

The structural safety diagnosis of Dabo Pagoda of Bulkuk Temple using analyses of ultrasonic wave velocity (초음파 속도 분석을 통한 불국사 다보탑 구조 안전 진단)

  • Suh, Man-Cheol;Song, In-Sun;Choi, Hui-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.199-209
    • /
    • 2002
  • We have carried out a nondestructive close examination for the purpose of the structural safety diagnosis of the Dabo Pagoda of Bulkuk temple located in Kyungju, Kyungbuk Korea. For estimating the mechanical properties of each rock block of the pagoda, ultrasonic measurements were conducted at 641 points of 255 blocks. The P-wave velocity ranges from 584m/sec through 5,169m/sec, and averages 2,901m/sec Based on this result, the uniaxial compressive strength was estimated to be $93{\sim}1,943kg/cm^2\;with\;396kg/cm^2$ of average, and the index of weathering is $0.07{\sim}0.88$ with 0.43 of average, which means the moderate degree of weathering. The comparison of the rock strength of each block with the overburden acting on the block reveals that the rock blocks related to the structure of the pagoda are relatively sound for uniform stress, but it is highly possible for a concentrated stress to lead to a partial failure. We suggest a monitoring of cracks due to the concentrated stress. The parapets of 1st and 2nd floors composed of small rock pieces are severely weathered. However, this is not directly related to the structural safety of the pagoda.

  • PDF

High-Resolution Seismic Reflection Profiling on Land with Hydrophones Employed in the Stream-Water Driven Trench (하천수유입과 하이드로폰을 이용한 육상 고분해능 탄성파반사법탐사)

  • Kim Ji-Soo;Han Su-Hyung;Kim Hak-Soo;Choi Won-Suk;Jung Chang-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.133-144
    • /
    • 2001
  • An effective seismic reflection technique for mapping the cavities and bedrock surface in carbonate rocks is described. The high resolution seismic reflection images were successfully registered by using the hydrophones employed in the stream-water driven trench, and were effectively focused by applying optimal data processing sequences. The strategy included enhancement of the signal interfered with the large-amplitude scattering noise, through pre- and post stack processing such as time-variant filtering, bad-trace editing, residual statics, velocity analysis, and careful muting after NMO (normal moveout) correction. The major reflections including the bedrock surface were mapped with the desired resolution and were correlated to the seismic crosshole tomographic data. Shallow major reflectors could be identified and analyzed on the AGC (auto gain control)-applied field records. Three subhorizontal layers were identified with their distinct velocities; overburden (<3000 m/s), sediments (3000-4000 m/s), limestone bedrock (>4000 m/s). Taking into account of no diffraction effects in the field records, gravel-rich overburdens and sediments are considered to be well sorted. Based on the images mapped consistently on the whole survey line and seismic velocity increasing with depth, this area probably lacks in sizable cavities (if any, no air-filled cavities).

  • PDF