• 제목/요약/키워드: Overall thermal performance

검색결과 251건 처리시간 0.016초

엔진 냉각시스템 성능해석에 관한 연구 (The Study about the Performance-Analysis of a Automotive Engine Cooling System)

  • 신창훈;이승희;박원규;장기룡
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.39-48
    • /
    • 2006
  • An engine cooling system affects overall performances of an engine which has been recently requested higher power in more confined engine room. The design of efficient cooling system demands a great effort to effectively correlate with each components, such as water jacket, radiator, coolant pump, cooling fan, etc. Thus, the aim of this study is to provide the design tool of the cooling system in the early design stage by enabling for the designer to accurately predict the engine cooling performances. This user-friendly design tool has various ways to assemble each components and control the running condition with related database. The present design tool was simulated and compared with experimental data. As a result, the inlet and outlet temperature of the radiator agree very well with experiments. It was concluded that the present design tool could be effectively used for the design of the engine cooling system.

다양한 노즐 수 변화에 따른 충돌 제트의 열전달 특성에 관한 수치적 연구 (A Numerical Study on the Heat Transfer Characteristics of the Multiple Slot Impinging Jet)

  • 김상근;하만영;손창민
    • 설비공학논문집
    • /
    • 제23권11호
    • /
    • pp.754-761
    • /
    • 2011
  • The present study numerically investigates two-dimensional flow and heat transfer in the multiple confined impinging slot jet. Numerical simulations are performed for the different Reynolds numbers(Re=100 and 200) in the range of nozzles from 1 to 9 and height ratios(H/D) from 2 to 5, where H/D is the ratio of the channel height to the slot width. The vector plots of velocity profile, stagnation and averaged Nusselt number distributions are presented in this paper. The dependency of thermal fields on the Reynolds number, nozzle number and height ratio can be clarified by observing the Nusselt number as heat transfer characteristic at the stagnation point and impingement surface. The Nusselt number at the stagnation point of the central slot shows unsteadiness at H/D=3 and Re=200. The value of Nusselt number at the stagnation point of the central slot decreases with higher Reynolds number and number of nozzle although overall area averaged Nusselt number increases. Hence careful selection of geometrical parameters and number of nozzle are necessary for optimization of the heat transfer performance of multiple slot impinging jet.

풍력 발전용 블레이드 접합부의 결함 검출을 위한 일정가압 메커니즘 설계 및 실험 (A Design and Experiment of Pressure and Shape Adaptive Mechanism for Detection of Defects in Wind Power Blade)

  • 임선;임승환;정예찬;지수정;남문호
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권3호
    • /
    • pp.224-235
    • /
    • 2017
  • Purpose: Reliability is the most important factor to detect defects as wind turbines are deployed in large blades. The methods of detecting defects are various, such as non-destructive inspection and thermal imaging inspection. We propose the phased array ultrasonic testing method of non-destructive testing. Methods: We propose the active pressure mechanism for wind power blade. The phase array ultrasonic inspection method is used for fault detection inner blade surface. Controlled pressure of mechanism with respect to z-axis is important for guarantee the result of phase array ultrasonic inspection. The model based control and proposed mechanism are utilized for overall system stability and effectiveness of system. Result: The result of proposed pressure mechanism B is more stable than A. Convergence speed is also faster than A. Conclusion: We confirmed the performance of the proposed constant pressure mechanism through experiments. Non-destructive testing was applied to the specimen to confirm the reliability of detecting defects.

메탄 마이크로 제트화염의 부상과 NOx 배출에 대한 마이크로파 효과 (Effects of Microwave Induction on the Liftoff and NOx Emission in Methane Micro Jet Flames)

  • 전영훈;이의주
    • 한국연소학회지
    • /
    • 제21권2호
    • /
    • pp.22-28
    • /
    • 2016
  • High efficient and environment friendly combustion technologies are used to be operated an extreme condition, which results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy is one of methods to enhance the combustion stability and a microwave as electromagnetic wave is receiving increased attention recently because of its high performance and low-cost system. In this study, an experiment was performed with jet diffusion flames induced by microwave. Micro jet was introduced to simulate the high velocity of industrial combustor. The results show that micro jet flames had three different modes with increasing oxidizer velocity; attached yellow flame, lifted flame, and lifted partially premixed flame. As a microwave was induced to flames, the overall flame stability and blowout limit were extended with the higher microwave power. Especially the interaction between a flame and a microwave was shown clearly in the partially premixed flame, in which the lift-off height decreased and NOx emission measured in post flame region increased with increasing microwave power. It might be attributed to increase of reactivity due to the abundance of radical pool and the enhanced absorption to thermal energy.

전자선을 이용해 가교된 SPEEK 기본 물질로 하는 이온 교환막의 특성 분석 (The Characterization of Crosslinked SPEEK Based Ion Exchange Membranes Prepared by EB Irradiation Method)

  • 송주명;신준화;손준용;노영창
    • 방사선산업학회지
    • /
    • 제5권2호
    • /
    • pp.151-157
    • /
    • 2011
  • Crosslinked SPEEK/PVDF membrane were prepared by EB radiation method with various contents of PVDF. The prepared membranes were subjected to a comparative study of proton exchange membranes for fuel cell appreciations. The crosslinked SPEEK/PVDF membranes were characterized by using DMA, DSC and SAXS. The DMA data indicate that the ionic modulus values and cluster $T_g$ decrease with increasing PVDF content. Thus, it was suggested that the number of clustering in the crosslinked membranes can be reduced with increasing PVDF content. The DSC results were shown that the degree of crystalline of the membrane increased with increasing PVDF content. The morphology of the crosslinkied membranes was shown that with increasing PVDF content, the number of crystalline domain of the SPEEK/PVDF membranes increased but ionic aggregation of the membranes decreased. The water uptake behavior, ionic exchange capacity (IEC) and proton conductivity were decreased with increasing PVDF content. The overall findings suggest that the crosslinked membranes offer the possibility for improving the performance of PEMFC, provided that the membranes have thermal and hydration stability.

지중온도회복을 고려한 지열 히트펌프 시스템의 운전방법 검토 (Study on the Operation Method of Ground Source Heat Pump System Considering Recovery of Ground Temperature)

  • 배상무;전재영;권영식;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.24-30
    • /
    • 2020
  • Ground source heat pump (GSHP) systems are actively introduced as cooling and heating conditioning systems of buildings due to annual stable performance and easily maintenance. However, ground temperature imbalance is occurred when the GSHP is used for a long period. Therefore, in this study, we proposed the operation method of the system that considered the recovery time of heat source temperature. The entering water temperature (EWT) and heat exchange rate (HER) were comparatively analyzed according to the continuous and intermittent operation. Furthermore, the underground thermal environment was evaluated by numerical analysis model. As the result, the intermittent operation was a maximum of 12.3% higher HER during the heating period than the continuous operation. In addition, the overall ground heat source temperature at the intermittent operation was higher than it at the continuous operation.

원전용 금속단열재의 내부 형상결정을 위한 설계인자 별 열전달 특성 분석 (Analysis of Heat Transfer Characteristics Based on Design Factors for Determining the Internal Geometry of Metal Insulation in Nuclear Power Plant)

  • 송기오;유정호;이태호;전현익;하승우;조선영
    • 대한기계학회논문집A
    • /
    • 제39권11호
    • /
    • pp.1175-1181
    • /
    • 2015
  • 일반적으로 산업현장에서 많이 사용되고 있는 단열재는 유리섬유와 같은 열전도도가 낮은 재료를 사용함으로써 단열성능을 확보하고 있다. 이와 달리 원전용 금속단열재의 경우 높은 열전도도를 가진 TP 304 스테인리스 박판을 재료로 한정하고 있어 단열성능을 확보하기 위해서는 구조적 측면에서의 접근이 필요하다. 본 연구에서는 금속단열재 내부구조에 대한 설계인자를 전도, 대류, 복사로 구성된 3가지 열전달 모드를 고려해 추출하고 각 인자들이 열전달에 미치는 영향과 각각의 열전달이 전체 열전달에 차지하는 비율을 열 유동해석을 이용하여 파악하고자 하였다. 본 연구를 통해 단열재 내부에서 발생되는 대류현상을 최소화하기 위해 다수의 박판을 삽입함과 동시에 증가하는 전도 비율을 비교하여 내부형상결정을 위한 세 가지 열전달 모드 하에서의 단열성능을 분석하였다.

소형 가스엔진 열병합발전 시스템의 안전관리 방안에 관한 연구 (A Study on the Safety Management Methods of Micro-Gas Engine Combined Heat and Power System)

  • 김소현;김민우;이은경;이정운
    • 한국가스학회지
    • /
    • 제22권6호
    • /
    • pp.76-89
    • /
    • 2018
  • 지속적인 산업 발전에 따른 에너지 수급의 불안정 및 환경오염 문제가 대두됨에 따라 이에 대한 해결 방안의 일환으로 열병합발전 시스템의 보급이 활발해지고 있다. 국내의 경우 가스엔진을 이용한 열병합발전기의 안전성능에 대한 검사기준이 미비하므로 이에 대한 연구가 필요한 실정이다. 본 연구에서는 20 kW급 가스엔진 열병합발전 시스템에 적용 가능한 안전성능 관련 표준화 연구 수행을 위해 열병합발전 시스템의 국내 외 기준에 대한 안전성능 및 구조/재료 평가기준을 분석하였다. 또한, 위험요소 분석 및 HAZOP (Hazard and Operability Studies)을 이용한 위험성평가를 수행하여 가스엔진 열병합발전 시스템의 안전성능 평가(안)을 도출하였으며, 평가항목으로는 안전성능 관련 엔진 시동, 배관 기밀 성능, 살수 및 온도 상승 성능, 연소 성능, 전기 효율, 열효율, 종합 효율, 습도 성능 등이 포함된다. 가스엔진 열병합발전 시스템의 구조 및 재료와 관련하여 가스 및 수배관, 가스 조절 및 차단밸브, 금속 또는 비금속 재료의 내구성, 내열성, 내한성에 대한 평가항목을 도출하였다.

CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: I. 동아시아 기온과 강수의 단기 및 장기 미래전망 (Future Change Using the CMIP5 MME and Best Models: I. Near and Long Term Future Change of Temperature and Precipitation over East Asia)

  • 문혜진;김병희;오효은;이준이;하경자
    • 대기
    • /
    • 제24권3호
    • /
    • pp.403-417
    • /
    • 2014
  • Future changes in seasonal mean temperature and precipitation over East Asia under anthropogenic global warming are investigated by comparing the historical run for 1979~2005 and the Representative Concentration Pathway (RCP) 4.5 run for 2006~2100 with 20 coupled models which participated in the phase five of Coupled Model Inter-comparison Project (CMIP5). Although an increase in future temperature over the East Asian monsoon region has been commonly accepted, the prediction of future precipitation under global warming still has considerable uncertainties with a large inter-model spread. Thus, we select best five models, based on the evaluation of models' performance in present climate for boreal summer and winter seasons, to reduce uncertainties in future projection. Overall, the CMIP5 models better simulate climatological temperature and precipitation over East Asia than the phase 3 of CMIP and the five best models' multi-model ensemble (B5MME) has better performance than all 20 models' multi-model ensemble (MME). Under anthropogenic global warming, significant increases are expected in both temperature and land-ocean thermal contrast over the entire East Asia region during both seasons for near and long term future. The contrast of future precipitation in winter between land and ocean will decrease over East Asia whereas that in summer particularly over the Korean Peninsula, associated with the Changma, will increase. Taking into account model validation and uncertainty estimation, this study has made an effort on providing a more reliable range of future change for temperature and precipitation particularly over the Korean Peninsula than previous studies.

입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링 (Turbidity Modeling for a Negative Buoyant Density Flow in a Reservoir with Consideration of Multiple Particle Sizes)

  • 정세웅;이흥수;정용락
    • 한국물환경학회지
    • /
    • 제24권3호
    • /
    • pp.365-377
    • /
    • 2008
  • Large artificial dam reservoirs and associated downstream ecosystems are under increased pressure from long-term negative impacts of turbid flood runoff. Despite various emerging issues of reservoir turbidity flow, turbidity modeling studies have been rare due to lack of experimental data that can support scientific interpretation. Modeling suspended sediment (SS) dynamics, and therefore turbidity ($C_T$), requires provision of constitutive relationships ($SS-C_T$) and accounting for deposition of different SS size fractions/types distribution in order to display this complicated dynamic behavior. This study explored the performance of a coupled two-dimensional (2D) hydrodynamic and particle dynamics model that simulates the fate and transport of a turbid density flow in a negatively buoyant density flow regime. Multiple groups of suspended sediment (SS), classified by the particle size and their site-specific $SS-C_T$ relationships, were used for the conversion between field measurements ($C_T$) and model state variables (SS). The 2D model showed, in overall, good performance in reproducing the reservoir thermal structure, flood propagation dynamics and the magnitude and distribution of turbidity in the stratified reservoir. Some significant errors were noticed in the transitional zone due to the inherent lateral averaging assumption of the 2D hydrodynamic model, and in the lacustrine zone possibly due to long-term decay of particulate organic matters induced during flood runoffs.