Browse > Article
http://dx.doi.org/10.3795/KSME-A.2015.39.11.1175

Analysis of Heat Transfer Characteristics Based on Design Factors for Determining the Internal Geometry of Metal Insulation in Nuclear Power Plant  

Song, Ki O (KLES Inc.)
Yu, Jeong Ho (KLES Inc.)
Lee, Tae Ho (KLES Inc.)
Jeon, Hyun Ik (KLES Inc.)
Ha, Seung Woo (KLES Inc.)
Cho, Sun Young (KLES Inc.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.39, no.11, 2015 , pp. 1175-1181 More about this Journal
Abstract
A heat insulating material used in the industrial site normally derives its heat insulating performance by using a low thermal conductivity material such as glass fiber. In case of the metal insulation for nuclear power plant, in contrast, only TP 304 stainless steel foil having high thermal conductivity is the only acceptable material. So, it is required to approach in structural aspect to ensure the insulation performance. In this study, the design factors related to the metal insulation internal structure were determined considering the three modes of heat transfer, i.e., conduction, convection, and radiation. The analysis of heat flow was used to understand the ratio of the heat transfer from each factor to the overall heat transfer from all the factors. Based on this study, in order to minimize the convection phenomenon caused by the internal insulation, a multiple foil was inserted in the insulation. The increase in the conduction heat transfer rate was compared, and the insulation performance under the three modes of heat transfer was analyzed in order to determine the internal geometry.
Keywords
Metal Insulation; Heat Transfer Rate; Conduction; Radiation; Convective Heat Transfer; Concept Design;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 USNRC, 2003, "Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Collant Accident," Regulatory Guide 1.82, Rev. 3.
2 USNRC, 2005, "GSI-191: Experimental Studies of Loss of Coolant Accident Generated Debris Accumulation and Head Loss with Emphasis on the Effects of Calcium Silicate Insulation," NUREG/CR-6874.
3 Kang, H. and Baek, Y. K., 2009, "An Analysis of Thermal Conductivity of Ceramic Fibrous Insulator by Modeling & Simulation Method I," Journal of the Korea Institute of Military Science and Technology, Vol. 5, No. 1, pp. 83-95.
4 ANSYS, Inc., 2011, "ANSYS FLUENT User's Guide," Ver. 14.0.
5 McAdams, W. H., 1954, Heat Transmission, 3rd ed., McGraw-Hill, New York, NY, pp. 165-171.
6 Incropera, F. P. and DeWitt, D. P., 1985, Fundamentals of Heat and Mass Transfer, John Wiley and Sons, New York, NY, pp. 795-797.
7 Mahesh, M. R. and Raul, R. K., 2011, Engineering Heat Transfer, Jones & Bartlett Learning, Burlington, pp. 883-884.
8 Greg, F. N., 2002, Heat Transfer in Single and Multiphase Systems, CRC PRESS, London, pp. 186-190.