• Title/Summary/Keyword: Overall thermal performance

Search Result 250, Processing Time 0.021 seconds

Rotor Blade Sweep Effect on the Performance of a Small Axial Supersonic Impulse Turbine

  • Jeong, Sooin;Choi, Byoungik;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.571-580
    • /
    • 2015
  • In this paper, a computational study was conducted in order to investigate the rotor blade sweep effect on the aerodynamics of a small axial supersonic impulse turbine stage. For this purpose, three-dimensional unsteady RANS simulations have been performed with three different rotor blade sweep angles ($-15^{\circ}$, $0^{\circ}$, $+15^{\circ}$) and the results were compared with each other. Both NTG (No tip gap) and WTG (With tip gap) models were applied to examine the effect on tip leakage flow. As a result of the simulation, the positive sweep model ($+15^{\circ}$) showed better performance in relative flow angle, Mach number distribution, entropy rise, and tip leakage mass flow rate compared with no sweep model. With the blade static pressure distribution result, the positive sweep model showed that hub and tip loading was increased and midspan loading was reduced compared with no sweep model while the negative sweep model ($-15^{\circ}$) showed the opposite result. The positive sweep model also showed a good aerodynamic performance around the hub region compared with other models. Overall, the positive sweep angle enhanced the turbine efficiency.

Computer Simulation of an Automotive Air-Conditioning in a Transient Mode

  • Oh, Sang-Han;Won, Sung-Pil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2002
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as a key design variable. Therefore, transient characteristics of each system component are essential to the preliminary design as well as steady-state performance. The objective of this study is to develop a computer simulation model and ostinato theoretically the transient performance of an automotive air-conditioning system. To do that, the mathematical modelling of each component, such as compressor, condenser, receiver/drier, expansion valve, and evaporator, is presented first of all. The basic balance equations about mass and energy are used in modelling. For detailed calculation, condenser and evaporator are divided into many sub-sections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in this analysis, but the quasisteady state ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. Also it is assumed that there are no heat loss and no pressure drop in discharge, liquid, and suction lines. The developed simulation model is validated by comparing with the laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed well with those of test data in this case.

Wear Performance of Pesticide Protective Clothing in Vinyl Plastic Hothouse made with Water-Oil Repellent and Dual Functional Finished Nonwoven Fabrics (비닐하우스 내에서의 발수발유가공 부직포와 복합가공 부직포로 만든 농약 방호복의 착용성능)

  • Choi, Jong-Myoung;Cho, Jeong-Sook;Cho, Gil-Soo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.2
    • /
    • pp.350-361
    • /
    • 1996
  • The objectives of this study mere 1) to investigate whether the different nonwoven fabric types influenced on the objective and subjective wear performances of the experimental pesticide protective pants, 2) to detect whether the different finishes treated to the nonwoven fabrics influenced on the objective and subjective wear performances of the experimental pants, and 3) to detect the relationships between objective wear performances and subjective wear sensation. Three types of nonwoven fabrics (T (Tyvek$\textregistered$), 5 (Sontara$\textregistered$) and K (Kimlon$\textregistered$)) were used as test specimens. By pad-dry.cure method, each of the specimen was treated with fluorocarbon compound for water-oil repellent finish (Tw, Sw, Kw). And each of specimen was treated with organic silicon quarternary ammonium salts and then treated with fluorocabon compound for dual functional finish (76, 50, Kd). Using the three water-oil repellent finished fabrics and the three dual functional finished fabrics, six experimental protective pants (Cl (Tw), C2 (Sw), C3 (Kw), C4 (76), C5 (56), C6 (Kd)) were made according to the same pattern suggested by the Rual Guidance Office. The wear trials of experimental pesticide protective pants were performed in a conditioned vinyl plastic hothouse ($30\pm1^{\circ}C$, $70\pm5%$R.H., 0.25m/sec air velocity). The measurements of skin temperature, microclimate temperature and humidity on the subjects were obtained by the themohygromenter. The subjective wear sensations were measured using previously developed thermal, humidity and overall comfort scales. The results obtained from this study were as follows: 1) There were siginificant differences among nonwoven fabric types on the objective and subjective wear performances, therefore, the skin temperature, microclimate temperature and humidity of subjects who wore the experimental pants made with Sontara were siginificantly lower than those who wore the others. And, the experimental pants made with Sontara were assessed as more comfortable than the others in terms of the subjective thermal, humidity and overall wear sensations. 2) There were no significant differences between two finish types on the objective and subjective wear Performances. 3) The microclimate humidity on the thigh was highly correlated with the overall subjective comfort sensations and the next highly correlated one was the mean skin temperature. That is, the higher the microclimate humidity and the mean skin temperature, the higher the overall subjective comfort sensation ratings which mean the overall subjective sensation was very uncomfortable.

  • PDF

Tribological Characteristics of proposed brake disk for Tilting train (틸팅차량용 제동 디스크의 트라이볼로지 특성 연구)

  • Park Kyung-sik;Kang Sung-woong;Cho Jeong-whan;Lee Hisung
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.491-497
    • /
    • 2005
  • Brake system is indispensible functional part to the transportation machines such as railroad cars, and all of industrial machines. It is mechanical element to stop the movement or slow the speed, transforming kinetic energy of motion object into thermal energy through solid friction. According that recently the railroad cars have become high-speed, the technique in braking domain to secure the overall braking effort is making rapid progress. In particular, material development and manufacturing process are so important to secure friction performance, which is the core in braking performance of mechanical brake units. Wear of brake disk could mainly result in the diminishment of its life span due to thermal cracking, so the endurance against high temperature is required. On the other hand, in this case, the problem is that the side wear of pad, relative material is slightly increased because of enlargement of plastic deformation. It is necessary, therefore, to develop a disk material that will be used in the Tilting System mechanical brake units. The purpose of this paper is to make a study prior to developing brake disk of Tilting Train travelling at 200km/h and to propose the component of brake disk. Accordingly, I will conduct sufficient researches on technical documents of brake disk, that are basic documentations, analyze an impact on components, and further, considering braking degree of train, study for the basic proposal on brake disk's component of the train travelling at 200km/h, which has relatively minor influence of heat stress and maintains the friction. In this respect, I would like to investigate friction characteristics between disk and relative friction material via Test on some possible test segments, analyze and propose friction performance, temperature impact and so forth coming from the contact with pad, relative material to demonstrate the friction characteristics.

  • PDF

Thermal Energy Storage in Phase Change Material - by Means of Finned Thermosyphon - (상변화 물질을 이용한 에너지의 저장에 관한 연구 - 핀이 부착된 열싸이폰의 이용에 관하여 -)

  • Kim, Kwon-Jin;Yoo, Jai-Suk;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 1991
  • A two-phase closed thermosyphon with circular fins was used as the heat transfer device for storing the thermal energy in paraffin wax. Experiments were carried out for 4, 6 and 8 fins and for various initial temperatures of the wax and power inputs. Heat transfer characteristics along the heat flow path were investigated as well as the overall performance of the system. Some of the important results are as follows:(1) The thermosyphon heat transfer coefficient and the overall heat transfer coefficient increased with the number of fins, whereas the heat transfer coefficient between the fin and the wax decreased; (2) Facilitation of heat transfer by the fins seemed to alleviate the dry-out phenomenon that had been reported to occur in case of bare thermosyphon; and (3) The horizontal fins had adverse effect of subduing a full scale convection in the wax, and the increase of the number of fins delayed the onset of local convection between the fins.

  • PDF

Development of Pilot Injection Plant for CO2 Underground Storage (이산화탄소 지중저장용 파일럿 주입플랜트 개발)

  • Yoon, Seok-Ho;Kim, Young;Lee, Jun-Ho;Lee, Kong-Hoon
    • Plant Journal
    • /
    • v.9 no.2
    • /
    • pp.42-45
    • /
    • 2013
  • The worldwide issue of greenhouse gas reduction has recently drawn great attention to carbon capture and storage(CCS). In this study, we developed a 10,000 ton/year pilot injection plant for geological storage of carbon dioxide. Major components of the pilot plant include a pressure pump, a booster pump, and an inline heater to bring liquid carbon dioxide into its supercritical state. The test results show that the pilot plant readily achieves the injection pressure and temperature, showing satisfactory control performance. The overall power consumption is 2,000 ~ 2,500 W, more than 75% of which consumed by the pressure pump. This study will facilitate varied research on greenhouse gas reduction as the only domestically developed system for geological injection.

  • PDF

Implementation of a Simulation Tool for Monitoring Runtime Thermal Behavior (실시간 온도 감시를 위한 시뮬레이션 도구의 구현)

  • Choi, Jin-Hang;Lee, Jong-Sung;Kong, Joon-Ho;Chung, Sung-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.145-151
    • /
    • 2009
  • There are excessively hot units of a microprocessor in today's nano-scale process technology, which are called hotspots. Hotspots' heat dissipation is not perfectly conquered by mechanical cooling techniques such as heatsink, heat spreader, and fans; Hence, an architecture-level temperature simulation of microprocessors is evident experiment so that designers can make reliable chips in high temperature environments. However, conventional thermal simulators cannot be used in temperature evaluation of real machine, since they are too slow, or too coarse-grained to estimate overall system models. This paper proposes methodology of monitoring accurate runtime temperature with Hotspot[4], and introduces its implementation. With this tool, it is available to track runtime thermal behavior of a microprocessor at architecture-level. Therefore, Dynamic Thermal Management such as Dynamic Voltage and Frequency Scaling technique can be verified in the real system.

The New Smart Power Modules for up to 1kW Motor Drive Application

  • Kwon, Tae-Sung;Yong, Sung-Il
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.464-471
    • /
    • 2009
  • This paper introduces a new Motion-$SPM^{TM}$ (Smart Power Modules) module in Single In-line Package (SIP), which is a fully optimized intelligent integrated IGBT inverter module for up to 1kW low power motor drive applications. This module offers a sophisticated, integrated solution and tremendous design flexibility. It also takes advantage of pliability for the arrangement of heat-sink due to two types of lead forms. It comes to be realized by employing non-punch-through (NPT) IGBT with a fast recovery diode and highly integrated building block, which features built-in HVICs and a gate driver that offers more simplicity and compactness leading to reduced costs and high reliability of the entire system. This module also provides technical advantages such as the optimized cost effective thermal performances through IMS (Insulated Metal Substrate), the high latch immunity. This paper provides an overall description of the Motion-$SPM^{TM}$ in SIP as well as actual application issues such as electrical characteristics, thermal performance, circuit configurations and power ratings.

A Study on the Development of Fouling Analysis Technique for Shell-and-Tube Heat Exchangers (다관원통형 열교환기의 파울링 해석기법 개발 연구)

  • Hwang, Kyeong-Mo;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.167-173
    • /
    • 2004
  • Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. The fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper describes the fouling analysis technique developed in this study which can analyze the thermal performance for heat exchangers and estimate the future fouling variations. To develop the fouling analysis technique fur heat exchangers, fouling factor was introduced based on the ASME O&M codes and TEMA standards. For the purpose or verifying the fouling analysis technique, the routing analyses were performed for four heat exchangers in several nuclear power plants; two residual heat removal heat exchangers of the residual heat removal system and two component cooling water heat exchangers of the component cooling water system.

Analysis of the experimental cooling performance of a high-power light-emitting diode package with a modified crevice-type vapor chamber heat pipe

  • Kim, Jong-Soo;Bae, Jae-Young;Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.801-806
    • /
    • 2015
  • The experimental analysis of a crevice-type vapor chamber heat pipe (CVCHP) is investigated. The heat source of the CVCHP is a high-power light-emitting diode (LED). The CVCHP, which exhibits a bubble pumping effect, is used for heat dissipation in a high-heat-flux system. The working fluid is R-141b, and its charging ratio was set at 60 vol.% of the vapor chamber in a heat pipe. The total thermal conductivity of the falling-liquid-film-type model, which was a modified model, was 24% larger than that of the conventional model in the LED package. Flow visualization results indicated that bubbles grew larger as they combined. These combined bubbles pushed the working fluid to the top, partially wetting the heat-transfer area. The thermal resistance between the vapor chamber and tube in the modified design decreased by approximately 32%. The overall results demonstrated the better heat dissipation upon cooling of the high-power LED package.