• Title/Summary/Keyword: Overall Vibration

Search Result 417, Processing Time 0.029 seconds

Investigation of Ride Value for Overseas and Domestic Passenger Cars (국내외 승용차들의 승차감 지수의 비교 및 분석)

  • 정완섭;조영건;박세진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.324-329
    • /
    • 1997
  • This paper introduces experimental results of ride values assessed for domestic and overseas passenger cars. The experiment was executed about four vehicles, three Korean persons, and two roads by measuring human 12-axis. The results include the comparison of the component ride values, overall ride value, and seat effective amplitude transmissibility. The relative comparison of the ride values for different cars is shown in this paper, which may lead us to judge the current address of Korean ride quality-related technology.

  • PDF

Development of Wind Noise Source Identification Technique for Vehicle Underbody (자동차 하부 공력소음 파악 기술의 개발)

  • 이강덕;정승균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.353-356
    • /
    • 2003
  • Acoustic holography is adopted in identifying the noise sources of a vehicle's underbody. Wind noise from a vehicle's underbody accounts for a large portion of the overall noise level due to the complex flow structure. Current study presents the development process of acoustic holography in the vehicle underbody, and discusses the results obtained using the method. Difficulties associated with using acoustic holography as well as the implication of the results regarding future noise reduction possibilities are discussed.

  • PDF

A study about an old age car performance characteristic (노후차량 성능 특성에 관한 연구)

  • Hong Yong-Ki;Kwon Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.332-337
    • /
    • 2005
  • In order to investigate performance changes, the acceleration, vibration, and braking performance tests were carried out on the electric multiple units (EMUs) with over 20 years operation. According to the testing results, in vibration and braking performance, the similar performance results were obtained as compared with newly manufactured EMUs. However, in terms of acceleration performance, below reference value (3.0 km/h/s) has been obtained. This is mainly due to performance deterioration including traction motor. The precision diagnosis evaluation of deteriorated EMUs will be provided through the overall evaluation of corrosion testing and structural performance of car body.

  • PDF

Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.347-360
    • /
    • 2017
  • The goal of this study is to fill this apparent gap in the area about vibration analysis of multiwalled carbon nanotubes (MWCNTs) curved panels by providing 3-D vibration analysis results for functionally graded multiwalled carbon nanotubes (FG-MWCNTs) sandwich structure with power-law distribution of nanotube. The effective material properties of the FG-MWCNT structures are estimated using a modified Halpin-Tsai equation. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. Also, the mass density and Poisson's ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. Parametric studies are carried out to highlight the influence of MWCNT volume fraction in the thickness, different types of CNT distribution, boundary conditions and geometrical parameters on vibrational behavior of FG-MWCNT thick curved panels. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary conditions including Free, Simply supported and Clamped at the curved edges. For an overall comprehension on 3-D vibration analysis of sandwich panel, some mode shape contour plots are reported in this research work.

Element Design of Balancing Shaft for Reducing the Vibration in Engine Module (엔진진동 저감을 위한 밸런싱샤프트의 요소설계 기법 연구)

  • Kim, Chan-Jung;Beak, Gyoung-Won;Lee, Bong-Hyun;Kim, Gi-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.615-620
    • /
    • 2005
  • Vibration in Engine module could be reduced by introducing a balance shaft module which has one or more unbalanced rotors. The unbalanced rotor is unbalanced in one direction that act as a opposite direction of the inertia force or moment triggered by engine component so that the largest order factor in vibration is efficiently decreased The ability of balance shaft to reduce the order element of engine component is investigated by a vehicle testing that is focused on comparing the vibration with balance shaft to that of without balance shaft. One of the commonly adapted balance shaft is tested by modal scheme for indemnifying the dynamic characteristics and an, the modal information is used for a clue to design the balance shaft module. The essential equation deriving the design parameters of unbalanced rotor is also presented for two cases, 3 in-ling and 4 in-ling cylinder model. Finally, the overall design process is explained with flow chart.

  • PDF

Acoustic Loads Test of the Upper Stage of KSLV-I (소형위성발사체 상단부의 음향하중시험)

  • Chun, Young-Doo;Park, Jong-Chan;Chung, Eui-Seung;Park, Jung-Joo;Cho, Kwang-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.224-227
    • /
    • 2007
  • This paper introduces the results of acoustic loads test conducted on the upper stage assembly of KSLV-I, which is the first Korea space launch vehicle. A launch vehicle and its payloads are subjected to severe acoustic pressure loading when they lift off and ascent during the transonic periods. Acoustic loadings are spreaded out broad frequncy-spectrum up to 10,000Hz. Acoustic loads are a primary source of structural random vibration of the upper stage and payloads. Therefore, in order to verify the structural integrity of the upper stage assembly of KSLV-I and the survivability of its components under severe random vibration environment, acoustic loads test is conducted in the high intensity acoustic chamber with 142dB (overall SPL). The results show the structural design and component random vibration specifications well meet with the environmental requirements.

  • PDF

Design and Verification of a Large Reverberation Chamber's Isolation System (대형 잔향실의 방진 구조 설계 및 검증시험)

  • 김홍배;이득웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1066-1074
    • /
    • 2004
  • A vibration isolation system for a large reverberation chamber (1,228 $m^3$ and 1,000 ton) has been installed and verified. The reverberation chamber generates loud noise and induces high level of vibration while performing spacecraft acoustic reliability tests. The isolation system prevents vibration transfer from the chamber to the enclosure buildings. This paper describes design process and commissioning experiments of the system. Design criteria have been derived from rigid body model of the chamber. The stiffness of neoprene pads has been selected by employing finite element analysis of the reverberant chamber and isolation system. A total of 21 neoprene pads have been installed between the chamber and supporting Pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. While 136.9 dB noise is generated in the chamber, absolute transmissibility of the isolation system has been measured. The measured natural frequency of the chamber is 10.2Hz, which is 80% of the predicted value. Overall transmissibility at working frequency range (25∼10.000 Hz) is less than -12.4 dB.

Physiological Approach on the Physical Fitness and Postural Balance Effects of a Whole-Body Vertical Vibration Intervention in Young Women

  • Ho, Chao-Chung;Sung, Hyun-Ho;Chen, Ming-Shu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.36-44
    • /
    • 2020
  • With the advent of westernized diet and a lack of exercise, young female college students are paying more attention to their bodyweight and health. Whole-body vibration has been demonstrated to be a suitable training method for improving knee extension maximal strength in young female athletes, as well as the gait performance in elderly women. This study aimed to evaluate the effects of a vertical vibration intervention on the physical fitness and postural balance in young females. Fifty-four young women were recruited; all subjects were randomly assigned to the intervention group and control group. The intervention group underwent vertical vibration with a platform for 12 weeks. The results showed that body mass index and body fat percentage had decreased (P<0.05). In addition, their muscle endurance as indicated by a sit-up test and their flexibility as indicated by a sit-and-reach test were both increased. With regard to postural balance, their 30-second sit-to-stand and timed up and go test results were improved. At the same time, their mean single-leg stance with eyes closed time increased (P<0.05). However, there were no significant differences, meanwhile, for the control group. Overall, the results showed that the whole body vibration (WBV) intervention had some beneficial effects on physical fitness and postural balance in young women.

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

Vibration Characteristics of Boxthorn(Lycium chinense Mill) (구기자 가지의 진동 특성)

  • 서정덕
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.105-114
    • /
    • 2001
  • Modulus of elasticity, modulus of rigidity, damping ratio, and natural frequency of three varieties of boxthorn (Lycium chinense Mill) (Cheongyang #2, Cheongyang gugija, and Cheongyang native) branches were analyzed. Modulus of elasticity and modulus of elasticity and modulus of rigidity of the boxthorn branch was determined using standard formula after simple beam bending and torsion test, respectively, using an universal testing machine. Damping ratio and natural frequency of branches were determined using a system consisted of an accelerometer, a PC equipped with A/D converter, and a software for data analysis. Relationship between the elastic modulus and branch diameter in overall varieties and branch types showed a good correlation (r -0.81). There was, however, no correlation between torsional rigidity and branch diameter. The internal damping results were highly variable and the overall range of the damping ratio of the boxthorn branch was 0.014-0.087, which indicated that the branch was a lightly damped structure. The natural frequency of the boxthorn branch was in the range of 89-363 rad/s for the overall varieties and branch types. A good correlation (r 0.82) existed between the natural frequency and branch diameter in overall varieties and branch type.

  • PDF