• Title/Summary/Keyword: OverLap

Search Result 68, Processing Time 0.026 seconds

The Torque Transmission Capacities of the Adhesive Tubular Lap Joint (접착제로 접착된 원형 겹치기이음의 토크 전달특성 연구)

  • 최진호;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.85-92
    • /
    • 1994
  • With the wide application of fiber-reinforced composite meterial in aircraft space structures and robot arms, the design and manufacture of composite joints have become a very important research area because they are often the weakest areas in composite structure. In this paper, the torque transmission capacities of the adhesive tubular single lap joint and double lap joint were studied. The stress and torque transmission capacity of the adhesive joints were analyzed by the finite element method and compared to the experimental results. The torque capacity of the double lap joint was increased 2.7 times over that of the single lap joint. Also, the fatigue limit of the double lap joint was increased 16 times over that of the single lap joint.

Refined 3-D Stress Analysis of Composite Wavy-Lap Joint (복합재료 Wavy-Lap Joint의 3-D 상세 응력 해석)

  • Shin, Hun;Lee, Chang-Sung;Kim, Seung-Jo;Kim, Wi-Dae
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.168-171
    • /
    • 2001
  • Due to intrinsic load eccentricity, severe peel stress concentration occurs at both ends of the single-lap joint. To avoid load eccentricity as well as the singular tensile peel stress in the joint interface, composite wavy-lap joint is proposed. In this paper, refined 3-D stress analysis of wavy-lap joint is performed by finite element method using parallel mutifrontal solver. Analysis results show that the singular tensile peel stress concentration is totally avoided in wavy-lap joint, and that loads are more evenly transferred over the length of the joint. Therefore, the strength of wavy-lap joint is significantly higher than that of conventional single-lap joint. And it is believed that even higher strengths can be obtained by optimizing the new design configuration.

  • PDF

Analytical Study on Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Columns with Lap Splices (주철근 겹침이음을 갖는 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구)

  • 김태훈;김운학;신현목;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.931-936
    • /
    • 2003
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. Lap splicing is also permitted if hoops or spiral reinforcement are provided over the lap length in the current seismic design provision. But sudden brittle failure of lap splices may occur under inelastic cyclic loading. The purpose of this study is the analytical prediction of nonlinear hysteretic behavior and ductility capacity of reinforced concrete bridge piers with lap splices under cyclic loading. For this purpose, a nonlinear analysis program, RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. Lap spliced bar element is developed to predict behaviors of lap spliced bar. Maximum bar stress and slip of lap spliced bar is considered.

  • PDF

Analysis of CIELuv Color feature for the Segmentation of the Lip Region (입술영역 분할을 위한 CIELuv 칼라 특징 분석)

  • Kim, Jeong Yeop
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2019
  • In this paper, a new type of lip feature is proposed as distance metric in CIELUV color system. The performance of the proposed feature was tested on face image database, Helen dataset from University of Illinois. The test processes consists of three steps. The first step is feature extraction and second step is principal component analysis for the optimal projection of a feature vector. The final step is Otsu's threshold for a two-class problem. The performance of the proposed feature was better than conventional features. Performance metrics for the evaluation are OverLap and Segmentation Error. Best performance for the proposed feature was OverLap of 65% and 59 % of segmentation error. Conventional methods shows 80~95% for OverLap and 5~15% of segmentation error usually. In conventional cases, the face database is well calibrated and adjusted with the same background and illumination for the scene. The Helen dataset used in this paper is not calibrated or adjusted at all. These images are gathered from internet and therefore, there are no calibration and adjustment.

Effect of Resistance Spot Welding Parameters on AA1100 Aluminum Alloy and SGACD Zinc coated Lap Joint Properties

  • Chantasri, Sakchai;Poonnayom, Pramote;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.153-160
    • /
    • 2015
  • This article is aimed to study the effects of resistance spot welding (RSW) on the lap joint properties between AA1100 aluminum alloy and SGACD zinc coated steel and its properties. The summarized experimental results are as follows. The summarized experimental results are as follows. The optimum welding parameters that produced maximum tensile shear strength of 2200 N was a welding current of 95 kA, a holding time of 10 cycles, and a welding pressure of 0.10 MPa. Increasing of welding current, increased the tensile shear strength of the joint and also increased the amount of aluminum dispersion at the joint interface. The lap joint of steel over the aluminum (Type I) showed the higher joint tensile shear strength than a lap joint of aluminum over the steel (Type II). The indentation depth and the ratio of the indentation depth to the plate thickness decreased when the welding current was increased in the type I lap joint and also decreased when the welding current was decreased in the type II lap joint. The interface structure showed the formation of the brittle $FeAl_3$ intermetallic compound that deteriorated the joint strength.

Reinforced concrete beam-column joints with lap splices under cyclic loading

  • Karabinis, Athanasios I.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.649-660
    • /
    • 2002
  • Experimental results are presented from tests conducted on reinforced concrete beam-column joints with lap splices under reversed cyclic loading simulating earthquake action. Response curves are compared for twenty-four specimens designed according to Eurocode 2. The main parameters of the investigation are, the geometry of the reinforcing bar extension, the applied axial load (normalized), the available cover over lap splice region extended as length required from Eurocode 2, as well as the shape and the volumetric percentage of the stirrups confining the lap splice zone. The results are evaluated with regards to the load intensity, the energy absorption capacity and the characteristics of the load deflection curve.

Lap Splice Length of Glass Fiber Reinforced Polymer (GFRP) Reinforcing Bar (GFRP 보강근의 이음성능)

  • Lee Chang-Ho;Choi Dong-Uk;Song Ki-Mo;Park Young-Hwan;You Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.120-123
    • /
    • 2004
  • The lap splice lengths of deformed steel reinforcing bars and GFRP bars were experimentally compared using beam specimens. The purpose was to evaluate the length required of the GFRP bar to develop strength at least equivalent to the conventional steel reinforcing bar. The main test variable was the lap splice length: 10, 20, 30 $d_b$ for the deformed steel bars and 20, 30, 40 $d_b$ for the GFRP bars. Two different types of GFRP bars were tested: (1) one with spiral-type deformation and (2) plain round bars. Elastic modulus was about 1/5 of the steel bars while the tensile strength was about 690 MPa for the GFRP bars. Nominal diameter of the GFRP bars and steel bars was 12.7 and 13 mm, respectively. Normal strength concrete (28-day $f_{cu}$ = 30 MPa) was used. For the conventional steel bars (SD400 grade), strength over 400 MPa in tension was developed using the lap splice length of 20 and 30 $f_{cu}$. Only $87\%$ of the nominal yield strength was reached with the lap splice length of 10 $d_b$. For the spiral-type deformed GFRP bars with $40-d_b$ lap splice length, 440 MPa in tension was determined. The maximum tensile strength developed of the GFRP bars with smaller lap splice lengths decreased. The plain GFRP bar was not effective in developing the tensile strength even with $40-d_b$ lap splice length. Development of the cracks on beam surface was clearly visible for the beams reinforced with the GFRP bars. Mid-span deflections, however, were significantly smaller than the comparable beams with conventional steel bars indicating potential ductility problem.

  • PDF

Lap Splice Length of Glass Fiber Reinforced Polymer (GFRP) Reinforcing Bars with Different Surface Design (외피형태에 따른 GFRP 보강근의 겹침 이음길이)

  • Choi Dong-Uk;Lee Chang-Ho;Ha Sang-Soo;Park Young-Hwan;You Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.449-452
    • /
    • 2004
  • The lap splice lengths of deformed steel reinforcing bars and GFRP bars with two different to surface type were experimentally compared using beam specimens. The purpose was to evaluate the length required of the GFRP bar to develop strength equivalent to the conventional steel reinforcing bar. The main test variable was the lap splice length. Two different GFRP bar surfaces were tested: (1) spiral-type GFRP bars and (2) sand coated GFRP bars. For the conventional steel bars (SD400 grade), strength over 400 MPa in tension was reached using the lap splice length of $30d_b$. Splice failure was observed in the specimen with the lap splice length of $20d_b$. For the spiral-type and sand coated GFRP bars, the tensile strength developed in the GFRP bars decreased with decreasing splice lengths. Development of the cracks on beam surfaces was clearly visible for the beams reinforced with the GFRP bars. Mid-span deflections, however, were significantly smaller than the comparable beams with conventional steel bars indicating potential ductility problem.

  • PDF

FEM Simulation of Lap Joint in $CO_2$ Laser Welding of Zn-coated Steel (아연도금 강판의 $CO_2$ 레이저 용접에서 겹치기 용접의 FEM 시뮬레이션)

  • 김재도;조치용
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.52-62
    • /
    • 1998
  • Laser beam welding of zinc-coated steel, especially lap joints, has a problem of zinc vapor produced during welding which has a low vaporization temperature of 906.deg. C. It is lower than the melting temperature of steel (1500.deg. C). The high pressure formed by vaporization of zinc during laser welding splatters the molten pool and creates porosities in weld. During laser lap welds of zinc-coated steel sheets with CW CO$_{2}$ laser the gap size has been analyzed and simulated using a FEM. The simulation has been carried out in the range of gap aetween 0 and 0.16 mm. The vaporized zinc gas has effected to prevent heat from conducting toward the bottom of sheets. In vaporized zinc gas has effected to prevent heat from conducting toward the bottom of sheets. In the case of too small gap size, zinc gas has not ejected and existed between two sheets. Therefore heat was difficult to conduct from the upper sheet to lower sheet and the upper sheet could over-melted. In the case of large gap size the zinc gas has been prefectly ejected but only a part of lower sheet has melted. The optimum range of gap size in the lap welds of zinc-coated steel sheets has been calculated to be between 0.08 and 0.12 mm. According to the comparison of experiment, the simulation is proved to be acceptable and applicable to laser lap welds.

  • PDF

Experimental Study on Effect of Confinement Details for Lap Splice of Headed Deformed Reinforcing Bars in Grade SD400 and SD500 (구속상세가 SD400 및 SD500 확대머리 이형철근의 겹침이음에 미치는 영향에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • KCI 2012 and ACI318-11 contains development length provisions for the use of headed deformed bars in tension and does not allow their tension lap splices. In ACI318-11, the confinement factor, such as transverse reinforcement factor, is not used to calculate the development length of headed bars. The purpose of this experimental study is to evaluate the effect of confinement details to the lap splice performance of headed deformed reinforcing bars in grade SD400 and SD500. The confinement details are stirrups and tie-down bars in lap zone. Test results showed that specimens with only stirrups had the brittle failure and could not increase lap strengths, and that specimens with composite confinements by stirrups and tie-down bars had the flexural strengths over than nominal flexural strengths. Stirrups with tie-down bars can have an effect on improvement in lap splice of headed bars in grade SD400 and SD500.