• Title/Summary/Keyword: Over-molding

Search Result 138, Processing Time 0.034 seconds

The Impact Properties and Wear Resistance of Polybutylene terephthalate (PBT) Cross-linked by Electron Beam Irradiation (전자선 가교된 PBT의 충격 특성 및 내마모 특성 연구)

  • Shin, Bum Sik;Ko, Keum Jin;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.145-149
    • /
    • 2011
  • Poly(butylenes terephthalate) have made large strides in applications of injection, extrusion, and molding material due to their excellent thermal resistance and appropriate mechanical properties. However, PBT was not hard polymer but a soft polymer which caused low absorption of external energy and the defect of being easily broken with the strong impact. Thus, the electron beam irradiation was carried out over a range of irradiation doses from 100 to 1,000 kGy for enhancing the properties. The decreases of $T_m$, $T_c$, and enthalpy were observed as increasing the absorbed dose in the results of DSC analysis. The improvement in the impact strength of PBT was clearly observed as the absorbed dose was increased. This was probably due to the 3-dimensional network structures, resulting in increasing the absorption of impact energy. In addition, the wear properties had increased at higher than 300 kGy. The negative deviation of weight loss confirmed the improvement of the wear properties of PBT, as evidenced by SEM observation on the wear surfaces.

Study on Mechanical and Electrical Properties of Expanded Graphite/Carbon fiber hybrid Conductive Polymer Composites (팽창흑연/탄소섬유 혼합 보강 전도성 고분자 복합재료의 특성 평가)

  • Oh, Kyung-Seok;Heo, Seong-Il;Yun, Jin-Chul;Han, Kyung-Seop
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.1-7
    • /
    • 2007
  • Expanded graphite/carbon fiber hybrid conductive polymer composites were fabricated by the preform molding technique. The conductive fillers were mechanically mixed with a phenol resin to provide an electrical property to composites. The conductive filler loading was fixed at 60wt.% to accomplish a high electrical conductivity. Expanded graphites were excellent in forming a conductive networking by direct contacts between them while it was hard to get the high flexural strength over 40MPa with using only expanded graphite and phenol resin. In this study, carbon fibers were added in composites to compensate the weakened flexural strength. The effect of carbon fibers on the mechanical and electrical properties was examined according to the weight ratio of carbon fiber. As the carbon fiber ratio increased, the flexural strength increased until the carbon fiber ratio of 24wt.%, and then decreased afterward. The electrical conductivity gradually decreased as the increase of the carbon fiber ratio. This was attributed to the non-conducting regions generated among the carbon fibers and the reduction of the direct contact areas between expanded graphites.

Hydrogenation of Polycyclic Aromatic Hydrocarbons Over Pt/Kieselguhr Catalysts in a Trickle Bed Reactor (Trickle Bed Reactor에서 Pt/Kieselguhr 촉매를 이용한 다환방향족 탄화수소 수소화 반응)

  • Seung Kyo, Oh;Seohyeon, Oh;Gi Bo, Han;Byunghun, Jeong;Jong-Ki, Jeon
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.331-338
    • /
    • 2022
  • The objective of this study is to prepare bead-type and pellet-type Pt (1 wt%)/Kieselguhr catalysts as hydrogenation catalysts for the polycyclic aromatic hydrocarbons (PAHs) included in pyrolysis fuel oil (PFO). The optimal reaction temperature to maximize the yield of saturated cyclic hydrocarbons during the PFO-cut hydrogenation reaction in a trickle bed reactor was determined to be 250 ℃. A hydrogen/PFO-cut flow rate ratio of 1800 was found to maximize 1-ring saturated cyclic compounds. The yield of saturated cyclic compound increased as the space velocity (LHSV) of PFO-cut decreased. The difference in hydrogenation reaction performance between the pellet catalyst and the bead catalyst was negligible. However, the catalyst impregnated by Pt after molding the Kieselguhr support (AI catalyst) showed higher hydrogenation activity than the catalyst molded after Pt impregnation on the Kieselguhr powder (BI catalyst), which was a common phenomenon in both the pellet catalysts and bead catalysts. This may be due to a higher number of active sites over the AI catalyst compared to the BI catalyst. It was confirmed that the pellet catalyst prepared by the AI method had the best reaction activity of the prepared catalysts in this study. The majority of the PFO-cut hydrogenation products were cyclic hydrocarbons ranging from C8 to C15, and C11 cyclic hydrocarbons had the highest distribution. It was confirmed that both a cracking reaction and hydrogenation occurred, which shifted the carbon number distribution towards light hydrocarbons.

Removal of Paraffin Wax from Ceramic Injection Mold Using Supercritical Carbon Dioxide (세라믹 사출성형체로부터 초임계이산화탄소를 이용한 파라핀왁스의 제거)

  • Kim, Dong-Hyun;Hong, Seung-Tae;Yoo, Ki-Pung;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Removal of paraffin wax from a ceramic injection mold using supercritical $CO_2$ has been studied. The paraffin wax is used as a binder in the ceramic injection molding process. The effects of pressure, temperature and flow rate of supercritical $CO_2$ on the removal of the paraffin wax were investigated. The removal rates were measured with various flow rates of $CO_2$ in the range of 328.15 - 348.15 K and 15 - 30 MPa. The removal rate of paraffin wax increased as the pressure increased. In the effect of temperature, the paraffin wax was effectively removed over 329.15K (melting point of paraffin wax), however, the efffct of temperature was not significant when the temperature was further increased. The increase of $CO_2$ flow rate also affected the removal of paraffin wax. However, the effect of flow rate was not observed when the flow rate reached a certain value. Propane was used as a co solvent in order to remove the paraffin wax effectively. When the propane was added to the $CO_2$, the removal efficiency was improved. The paraffin wax was completely removed from the ceramic injection mold without any change in their shape and the structure.

  • PDF

Microbiological Quality Evaluation for Application of the HACCP System to the Bakery Products at Small Scale Bakeries (소규모 베이커리에서의 HACCP적용을 위한 미생물학적 위해도 평가)

  • 엄애선;권성희;정덕화;오상석;이헌옥
    • Korean journal of food and cookery science
    • /
    • v.19 no.4
    • /
    • pp.454-462
    • /
    • 2003
  • Recently, the HACCP(Hazard Analysis Critical Control Point) system has been emphasized in food processing industries throughout the world. However, the system has, as yet, not been applied very well to domestic food industries. Due to the increase in the consumption of bakery products, more studies are required on the application of HACCP to establish the system in small-scale bakeries. This study was designed to provide basic data for setting management standards for HACCP, based on microbiological hazard evaluations of bakery products. Red bean paste filled breads, custard cream filled breads and cakes covered with fresh whipping cream were collected, and microbiological evaluations conducted on the raw materials, the manufacturing processes and potential hazards. The result showed the presence of coliforms in fresh cream of cakes and the soybean paste of soybean paste breads at levels as high as 105 CFU/g on the hazard analysis of the raw materials. Moreover, the general levels of bacteria and coliforms were over those of the standards during the intermediate fermentation and molding processes. Furthermore, high levels of coliforms were detected on the hands of the salesmen and bakers themselves. This suggests that the CCPs (Critical Control Points), such as fresh cream and red bean paste manufacturing process desperately require better management. There is also a requirement for education relating to personal hygiene for the production of hygienic bakery products and for the publics health.

Scientific Analysis of Firing Characteristics for Walls and Rooftiles Excavated from Jeseoksa Dump-site, Iksan (익산 제석사지 폐기유적 벽체 및 기와의 피열특성)

  • Ahn, Kyoung Suk;Lee, Min Hye;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.567-578
    • /
    • 2021
  • In this study, the physicochemical properties of 21 wall fragments and rooftile pieces excavated from Jeseoksa Dump-site were analyzed, and the possibility of heat exposure, such as the fire reported in the literature, was investigated by estimating the firing temperature. From the results, it was estimated that the rooftiles were composed of refined materials, and the walls were composed of materials having different particle sizes depending on the layer. Unlike ordinary rooftiles and walls, they exhibited an uneven surface with traces of bloating phenomenon in the cross section. It was estimated from the blackening of some portions that firing was not performed in a controlled state in a constant firing environment. In addition, the estimated firing temperature showed that the non-overfired rooftiles had endured a firing temperature of 900℃ or less, but the over-fired samples were subjected to a temperature of 1,000℃ or higher and were fired at a temperature higher than the manufacturing temperature at that time. Additionally, the rooftiles probably became defective during firing or molding at the time of production, but the non-overfired rooftiles exhibited an intact shape and showed the possibility of heat exposure due to fire. Therefore, the analytical results of this study confirm that the defective architectural components damaged by the fire, as reported in the literature, were discarded in the Jeseoksa dump-site.

The Study on Physical Properties and Applicability of Material of Polyamide-66/Glass Fiber Blends Composition to the Eyewear Frame (Polyamide-66/Glass fiber 블렌드 조성물의 물리적 특성 및 안경테 소재로써의 적용성에 관한 연구)

  • Son, Jin-Young;Lee, Ji-Eun;Choi, Kyung-Man;Bae, Yu-Hwan;Kim, Ki-Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.365-371
    • /
    • 2013
  • Purpose: In this study, we evaluated the physical and thermal properties of the compositions made by blending glass fiber (GF) of different contents into glass fiber polyamide-66, and investigated if the compositions applying to the glasses frame to replace the TR-90, which is polyamide-12 resin used as an injection-type spectacle frame material. Methods: To investigate the characteristics change of polyamide-66 (PA-66) compositions with the change of the content of glass fibers, we produced a composition of the content by using a twin-screw extruder. The mechanical strength of the composition production was measured and coating properties as well as cutting processability were evaluated. We evaluated the applicability of the glasses frame by comparison the results of new compositions with characterizations of traditional TR. Results: For the results of the characterization of Polyamide-66/GF composition, we found that the higher increase of content of the glass fiber, the less mold shrinkage rate, and the mechanical strength was increased. Tensile strength increased from $498kg/cm^2$ for 0 wt% of the content of the glass fibers to $849kg/cm^2$ for 30 wt% of the content of the glass fibers. As a result of a coating evaluation, the strength of coating was 4B in the GF 5wt% and 5B, which was extremely good coating characteristics, in the over than GF 5 wt%. Conclusions: In case that 30 wt% of the glass fiber was blended, the mechanical strength was greatly improved, the hardness was increased, injection temperature increased due to increase of the viscosity, and the flow mark of the product may occur. The paint coating of PA-66 blended with glass fiber was all excellent. With general evaluating physical properties and workability properties it was determined that around 10 wt% of the content of the glass fibers was possible to apply a spectacle frame.

Blend Characteristics of PBT, Nylon6,12 and Preparation of PBT/Nylon6,12 Micro Fiber with Core/shell Structure and their Extrusion Conditions (PBT와 Nylon6,12의 블렌드 특성과 core/shell 구조를 갖는 PBT/Nylon6,12 미세모의 제조 및 압출조건)

  • Park, Hui-Man;Lee, Seon-Ho;Kwak, Noh-Seok;Hwang, Chi Won;Park, Sung-Gyu;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1068-1075
    • /
    • 2012
  • Poly(butylene terephthalate) (PBT)/Nylon6,12 core/shell micro fiber were prepared by extrusion molding. To investigate their optimum extrusion conditions, compatibility of PBT/Nylon6,12 blend micro fiber in conformity to their weight ratio and manufacture temperature was explored with SEM morphology and DSC. The alterations in their mechanical properties by extrusion speed were compared and analyzed through a UTM. In comparison with SEM figures, the domain sizes of Nylon6,12 were gradually declined by increasing the extrusion temperature of blends. Furthermore, according to these SEM images, the phase separation between Nylon6,12 domain and PBT matrix became indistinct with increasing of weight percentage of Nylon6,12. In case of DSC, the boundaries of two peaks were almost disappeared when increasing the extrusion temperature and also intervals of each two melting peaks became narrow as increasing the Nylon6,12 ratio. The mechanical properties including tensile strength, elongation, flexural strength and flexural modulus were increased as the increase in the extrusion temperature until $260^{\circ}C$. However, the mechanical properties were actually deteriorated over $260^{\circ}C$. The tensile strength, elongation, flexural strength and flexural modulus at $260^{\circ}C$ were 560 $kg_f/cm^2$, 220%, 807 $kg_f/cm^2$ and 22,146 $kg_f/cm^2$, respectively. These values are more than intermediate values of mechanical properties of PBT and Nylon6,12. These results mean that there is compatibility between PBT and Nylon6,12. Based on the extrusion conditions that produced optimum compatibility of blend, as a result, our group obtained micro fibers with the core/shell structure.