• Title/Summary/Keyword: Over-Segmentation

Search Result 349, Processing Time 0.03 seconds

A Comparative Performance Analysis of Segmentation Models for Lumbar Key-points Extraction (요추 특징점 추출을 위한 영역 분할 모델의 성능 비교 분석)

  • Seunghee Yoo;Minho Choi ;Jun-Su Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.354-361
    • /
    • 2023
  • Most of spinal diseases are diagnosed based on the subjective judgment of a specialist, so numerous studies have been conducted to find objectivity by automating the diagnosis process using deep learning. In this paper, we propose a method that combines segmentation and feature extraction, which are frequently used techniques for diagnosing spinal diseases. Four models, U-Net, U-Net++, DeepLabv3+, and M-Net were trained and compared using 1000 X-ray images, and key-points were derived using Douglas-Peucker algorithms. For evaluation, Dice Similarity Coefficient(DSC), Intersection over Union(IoU), precision, recall, and area under precision-recall curve evaluation metrics were used and U-Net++ showed the best performance in all metrics with an average DSC of 0.9724. For the average Euclidean distance between estimated key-points and ground truth, U-Net was the best, followed by U-Net++. However the difference in average distance was about 0.1 pixels, which is not significant. The results suggest that it is possible to extract key-points based on segmentation and that it can be used to accurately diagnose various spinal diseases, including spondylolisthesis, with consistent criteria.

Computation ally Efficient Video Object Segmentation using SOM-Based Hierarchical Clustering (SOM 기반의 계층적 군집 방법을 이용한 계산 효율적 비디오 객체 분할)

  • Jung Chan-Ho;Kim Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.74-86
    • /
    • 2006
  • This paper proposes a robust and computationally efficient algorithm for automatic video object segmentation. For implementing the spatio-temporal segmentation, which aims for efficient combination of the motion segmentation and the color segmentation, an SOM-based hierarchical clustering method in which the segmentation process is regarded as clustering of feature vectors is employed. As results, problems of high computational complexity which required for obtaining exact segmentation results in conventional video object segmentation methods, and the performance degradation due to noise are significantly reduced. A measure of motion vector reliability which employs MRF-based MAP estimation scheme has been introduced to minimize the influence from the motion estimation error. In addition, a noise elimination scheme based on the motion reliability histogram and a clustering validity index for automatically identifying the number of objects in the scene have been applied. A cross projection method for effective object tracking and a dynamic memory to maintain temporal coherency have been introduced as well. A set of experiments has been conducted over several video sequences to evaluate the proposed algorithm, and the efficiency in terms of computational complexity, robustness from noise, and higher segmentation accuracy of the proposed algorithm have been proved.

Efficient Logical Topology Design Considering Multiperiod Traffic in IP-over-WDM Networks

  • Li, Bingbing;Kim, Young-Chon
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • In recent years energy consumption has become a main concern for network development, due to the exponential increase of network traffic. Potential energy savings can be obtained from a load-adaptive scheme, in which a day can be divided into multiple time periods according to the variation of daily traffic patterns. The energy consumption of the network can be reduced by selectively turning off network components during the time periods with light traffic. However, the time segmentation of daily traffic patterns affects the energy savings when designing multiperiod logical topology in optical wavelength routed networks. In addition, turning network components on or off may increase the overhead of logical topology reconfiguration (LTR). In this paper, we propose two mixed integer linear programming (MILP) models to design the optimal logical topology for multiple periods in IP-over-WDM networks. First, we formulate the time-segmentation problem as an MILP model to optimally determine the boundaries for each period, with the objective to minimize total network energy consumption. Second, another MILP formulation is proposed to minimize both the overall power consumption (PC) and the reconfiguration overhead (RO). The proposed models are evaluated and compared to conventional schemes, in view of PC and RO, through case studies.

A Study on Object Segmentation Using Snake Algorithm in Disparity Space (변이공간에서 스네이크 알고리즘을 이용한 객체분할에 관한 연구)

  • Yu Myeong-Jun;Kim Shin-Hyoung;Jang Jong Whan
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.769-778
    • /
    • 2004
  • Object segmentation is a challenging Problem when the background is cluttered and the objects are overlapped one another. Recent develop-ment using snake algorithms proposed to segment objects from a 2-D Image presents a higher possibilityfor getting better contours. However, the performance of those snake algorithms degrades rapidly when the background is cluttered and objects are overlapped one another, Moreover, the initial snake point placement is another difficulty to be resolved. Here, we propose a novel snake algorithm for object segmentation using disparity information taken from a set of stereo images. By applying our newly designed snake energy function defined in the disparity space, our algorithmeffectively circumvents the limitations found in the previous methods. The performance of the proposed algorithm has been verified by computer simulation using various stereo image sets. The experiment results have exhibited a better performance over the well-known snake algorithm in terms of segmentation accuracy.

Image Segmentation Using Block Classification and Watershed Algorithm (블록분류와 워터쉐드를 이용한 영상분할 알고리듬)

  • Lim, Jae-Hyuck;Park, Dong-Kwon;Won, Chee-Sun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.81-92
    • /
    • 1999
  • In this paper, we propose a new image segmentation algorithm which can be use din object-based image coding applications such as MPGA-4. Since the conventional objet segmentation methods based on mathematical morphology tend to yield oversegmented results, they normally need a postprocess which merges small regions to obtain a larger one. To solve this oversegmentation problem, in this paper, we prosed a block-based segmentation algorithm that can identify large texture regions in the image. Also, by applying the watershed algorithm to the image blocks between the homogeneous regions, we can obtain the exact pixel-based contour. Experimental results show that the proposed algorithm yields larger segments, particularly in the textural area, and reduces the computational complexities.

  • PDF

A Novel Way of Context-Oriented Data Stream Segmentation using Exon-Intron Theory (Exon-Intron이론을 활용한 상황중심 데이터 스트림 분할 방안)

  • Lee, Seung-Hun;Suh, Dong-Hyok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.799-806
    • /
    • 2021
  • In the IoT environment, event data from sensors is continuously reported over time. Event data obtained in this trend is accumulated indefinitely, so a method for efficient analysis and management of data is required. In this study, a data stream segmentation method was proposed to support the effective selection and utilization of event data from sensors that are continuously reported and received. An identifier for identifying the point at which to start the analysis process was selected. By introducing the role of these identifiers, it is possible to clarify what is being analyzed and to reduce data throughput. The identifier for stream segmentation proposed in this study is a semantic-oriented data stream segmentation method based on the event occurrence of each stream. The existence of identifiers in stream processing can be said to be useful in terms of providing efficiency and reducing its costs in a large-volume continuous data inflow environment.

Kidney Tumor Segmentation Using a Hybrid CNN-Transformer Network for Partial Nephrectomy Planning (부분 신장 절제술 계획을 위한 하이브리드 CNN-트랜스포머 네트워크를 활용한 신장 종양 분할)

  • Goun Kim;Jinseo An;Yubeen Lee;Helen Hong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.4
    • /
    • pp.11-18
    • /
    • 2024
  • In partial nephrectomy for kidney cancer treatment, accurate segmentation of the kidney tumor is crucial for surgical planning, as it provides essential information on the precise size and location of the tumor. However, it is challenging due to the tumor's similar intensity to surrounding organs and the variability in its location and size across patients. In this study, we propose a hybrid network that integrates a convolutional neural network and a transformer to capture both local and global features, aiming to improve the segmentation performance of kidney tumors. We validated our method through comparative experiments with UNETR++, outperforming it with a Dice Similarity Coefficient (DSC) of 78.54% and a precision of 85.0 7%. Moreover, in the analysis by tumor size, our method demonstrated improvements by reducing over-segmentation and outlier cases observed in UNETR++.

Text-dependent Speaker Verification System Over Telephone Lines (전화망을 위한 어구 종속 화자 확인 시스템)

  • 김유진;정재호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.663-667
    • /
    • 1999
  • In this paper, we review the conventional speaker verification algorithm and present the text-dependent speaker verification system for application over telephone lines and its result of experiments. We apply blind-segmentation algorithm which segments speech into sub-word unit without linguistic information to the speaker verification system for training speaker model effectively with limited enrollment data. And the World-mode] that is created from PBW DB for score normalization is used. The experiments are presented in implemented system using database, which were constructed to simulate field test, and are shown 3.3% EER.

  • PDF

Effective Multi-Modal Feature Fusion for 3D Semantic Segmentation with Multi-View Images (멀티-뷰 영상들을 활용하는 3차원 의미적 분할을 위한 효과적인 멀티-모달 특징 융합)

  • Hye-Lim Bae;Incheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.505-518
    • /
    • 2023
  • 3D point cloud semantic segmentation is a computer vision task that involves dividing the point cloud into different objects and regions by predicting the class label of each point. Existing 3D semantic segmentation models have some limitations in performing sufficient fusion of multi-modal features while ensuring both characteristics of 2D visual features extracted from RGB images and 3D geometric features extracted from point cloud. Therefore, in this paper, we propose MMCA-Net, a novel 3D semantic segmentation model using 2D-3D multi-modal features. The proposed model effectively fuses two heterogeneous 2D visual features and 3D geometric features by using an intermediate fusion strategy and a multi-modal cross attention-based fusion operation. Also, the proposed model extracts context-rich 3D geometric features from input point cloud consisting of irregularly distributed points by adopting PTv2 as 3D geometric encoder. In this paper, we conducted both quantitative and qualitative experiments with the benchmark dataset, ScanNetv2 in order to analyze the performance of the proposed model. In terms of the metric mIoU, the proposed model showed a 9.2% performance improvement over the PTv2 model using only 3D geometric features, and a 12.12% performance improvement over the MVPNet model using 2D-3D multi-modal features. As a result, we proved the effectiveness and usefulness of the proposed model.

Automatic Detection of Objects-of-Interest using Visual Attention and Image Segmentation (시각 주의와 영상 분할을 이용한 관심 객체 자동 검출 기법)

  • Shi, Do Kyung;Moon, Young Shik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.137-151
    • /
    • 2014
  • This paper proposes a method of detecting object of interest(OOI) in general natural images. OOI is subjectively estimated by human in images. The vision of human, in general, might focus on OOI. As the first step for automatic detection of OOI, candidate regions of OOI are detected by using a saliency map based on the human visual perception. A saliency map locates an approximate OOI, but there is a problem that they are not accurately segmented. In order to address this problem, in the second step, an exact object region is automatically detected by combining graph-based image segmentation and skeletonization. In this paper, we calculate the precision, recall and accuracy to compare the performance of the proposed method to existing methods. In experimental results, the proposed method has achieved better performance than existing methods by reducing the problems such as under detection and over detection.