DOI QR코드

DOI QR Code

A Study on Object Segmentation Using Snake Algorithm in Disparity Space

변이공간에서 스네이크 알고리즘을 이용한 객체분할에 관한 연구

  • 유명준 (배재대학교 대학원 정보통신공학과) ;
  • 김신형 (배재대학교 대학원 정보통신공학과) ;
  • 장종환 (배재대학교 정보통신공학과)
  • Published : 2004.12.01

Abstract

Object segmentation is a challenging Problem when the background is cluttered and the objects are overlapped one another. Recent develop-ment using snake algorithms proposed to segment objects from a 2-D Image presents a higher possibilityfor getting better contours. However, the performance of those snake algorithms degrades rapidly when the background is cluttered and objects are overlapped one another, Moreover, the initial snake point placement is another difficulty to be resolved. Here, we propose a novel snake algorithm for object segmentation using disparity information taken from a set of stereo images. By applying our newly designed snake energy function defined in the disparity space, our algorithmeffectively circumvents the limitations found in the previous methods. The performance of the proposed algorithm has been verified by computer simulation using various stereo image sets. The experiment results have exhibited a better performance over the well-known snake algorithm in terms of segmentation accuracy.

본 논문에서는 2차원 영상의 객체분할 방법으로 잘 알려져 있는 Snake 알고리즘을 스테레오 영상(Stereo Image)에 적용할 수 있는 새로운 알고리즘을 제안한다. 기존의 2차원 단일영상에 적용한 Snake 알고리즘은 만족한 결과를 얻기 위해선 분할하려는 객체의 주변 배경이 단순하고, 다른 객체들과 중첩되어 있지 않으며, 초기 Snake 포인트를 객체의 윤곽(Boundary) 가까이에 사용자가 설정해야 하는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 스테레오 영상에서 얻을 수 있는 변이정보(Disparity Iformation)를 이용하여 변이공간(Disparity Space)에서 새로운 Snake 에너지 함수를 정의하였으며, 정의한 에너지 함수를 사용하여 스테레오 영상에 적용할 수 있는 새로운 객체 분할 알고리즘을 제안하였다. 제안한 알고리즘은 복잡도가 다양한 실험영상에 적용하여 성능을 분석하였다.

Keywords

References

  1. M. Bais, J. Cosmas, C. Dosch, A. Engelsberg, A. Erk, P. S. Hansen, P. Healey, G. K. Klungsoeyr, R. Mies, J. R. Ohm, Y. Paker, A. Pearmain, L. Pedersen, A. Sandvancd, R. Schafer, P. Schoonjans and P. Stammnitz, 'Customized Television: Standards Compliant Advanced Digital Television,' IEEE Trans. Broad, Vol.48, No.2, pp.151-158, June, 2002 https://doi.org/10.1109/TBC.2002.1021281
  2. D. R. Clewer, L. J. Luo, C. N. Canagarajah, D. R. Bull and M. H. Barton, 'Efficient multiview image compression using Quadtree disparity estimation,' ISCAS 2001, Vol.5, pp, 295-298, May, 2001 https://doi.org/10.1109/ISCAS.2001.922043
  3. Y. J. Song, 'Improved Disparity Estimation Algorithm with MPEG-2's Scalability for Stereoscopic Sequences,' IEEE Trans. Consumer Elect., Vol.42, No.3, pp.306-311, August, 1996 https://doi.org/10.1109/30.536218
  4. Sikora Thomas, 'The MPEG-4 video standard verification model', IEEE Transactions on Circuits and Systems for Video Technology, pp.19-31, Feb., 1997 https://doi.org/10.1109/76.554415
  5. ISO/IEC JTC/SC29/WG11/W4350 : 'Information Technology-Coding of Audio-Visual Objects Part2 : visual,' ISO/IEC 14496-2, July, 2001
  6. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addision Wesley Publishing Company, 1992
  7. R. M. Haralick and L. G. Shapiro, 'SURVEY: Image Segmentation Techniques,' Computer Vision Graphics and Image Processing, Vol.29, 1985
  8. R. Adams and L. Bischof, 'Seeded Region Growing,' IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.16, No.6, pp.641-647, June, 1994 https://doi.org/10.1109/34.295913
  9. G. T. Herman and B. M. Carvalho, 'Multiseeded Segmentation Using Fuzzy Connectedness,' IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.23, No.5, pp.460 -474, May, 2001 https://doi.org/10.1109/34.922705
  10. S. Beucher and C. Lantuejoul, 'Use of Watershed in Contour Detection,' Proceedings of the International Workshop on Image Processing, CCETT/IRISA, Rennes, France, 1979
  11. L. Vincent and P. Soille, 'Watersheds in Digital Spaces : An Efficient Algorithm based on Immersion Simulations,' PAMI. 13, no. 6, pp 583-589, 1991 https://doi.org/10.1109/34.87344
  12. M. Kass, A. Witkin and D. Terzopoulos, 'Snake : Active Contour Models,' Int'l J. Computer Vision, Vol.1, No.4, pp. 321-331, Jan, 1987 https://doi.org/10.1007/BF00133570
  13. Amir A. A., Terry E. W. and Ramesh C. J., 'Using Dynamic Programming for Solving Variational Problems in Vision,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 9, pp. 855-867, 1990 https://doi.org/10.1109/34.57681
  14. Donna J. Williams and Mubarak Shah, 'A Fast Algorithm for Active Contours and Curvature Estimation,' CVGIP: Image Understanding, Vol.55, No.1, January, pp.14-26, 1992 https://doi.org/10.1016/1049-9660(92)90003-L
  15. K. M. Lanand H. Yan, 'Fast Greedy Algorithm for Active Contours,' Electron Letter, Vol.30, No.1, pp.21-23, January, 1994 https://doi.org/10.1049/el:19940040
  16. Takeo Kanade, Masatoshi Okutomi, 'A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 16, no. 9, Sept, 1994 https://doi.org/10.1109/34.310690
  17. S. Birchfield and C. Tomasi, 'Depth Discontinuities by Pixel-to-Pixel Stereo,' International Journal of Computer Vision, Vol.35, No.3, pp.269-293, December, 1999 https://doi.org/10.1023/A:1008160311296
  18. A. Redert, E. Hendriks and J. Biemond, 'Correspondence Estimation in Image Pairs,' IEEE Signal Processing Mag., Vol.16, No.3, pp.29-46, May, 1999 https://doi.org/10.1109/79.768571
  19. C. J. Tasi and A. K. Katsaggelos, ' Dense Disparity Estimation with a Divide-and-Conquer Disparity Space Image Technique,' IEEE, Trans. Multimedia, Vol.1, No.1, pp.18-29, March, 1999 https://doi.org/10.1109/6046.748168
  20. C. Lawrence Zitnick and T. Kanade, 'A Cooperative Algorithm for Stereo Matching and Occlusion Detection', IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 7, pp. 1-10, 2000 https://doi.org/10.1109/34.865184
  21. V. A. Christopoulos, P. D. Muunck and J. Cornelis, 'Contour Simplification for Segmented Still Image and Video Coding : Algorithms and Results,' Signal Processing : Image Commun., Vol.14, No.4, pp.335-357, Feb., 1999 https://doi.org/10.1016/S0923-5965(98)00017-4