• Title/Summary/Keyword: Output power oscillation

Search Result 166, Processing Time 0.022 seconds

A Study of High Power Microwave Output by K-band Waveguide (K-band 도파관을 이용한 대전력 마이크로파 출력장치 연구)

  • Kim, Won-Sop
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.588-591
    • /
    • 2009
  • We had experimental studies of microwave output generator. We experimented with a corrugate-shped K-band slow wave guide in the backward wave oscillator. It generated output 표 interaction between electron beam's generation and magnetic field. We estimated oscillation frequency at 24GHz by changing propagation velocity and group velocity. We identified movement by second harmonic of Cherencov interaction and slow cyclotron mode. In our study we achieved oscillation stabilization, generation of long pulse, improvement of oscillation efficiency and output.

Power Control Strategies for Single-Phase Voltage-Controlled Inverters with an Enhanced PLL

  • Gao, Jiayuan;Zhao, Jinbin;He, Chaojie;Zhang, Shuaitao;Li, Fen
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.212-224
    • /
    • 2018
  • For maintaining a reliable and secure power system, this paper describes the design and implement of a single-phase grid-connected inverter with an enhanced phase-locked loop (PLL) and excellent power control performance. For designing the enhanced PLL and power regulator, a full-bridge voltage-controlled inverter (VCI) is investigated. When the grid frequency deviates from its reference values, the output frequency of the VCI is unstable with an oscillation of 2 doubling harmonics. The reason for this oscillation is analyzed mathematically. This oscillation leads to an injection of harmonics into the grid and even causes an output active power oscillation of the VCI. For eliminating the oscillation caused by a PLL, an oscillation compensation method is proposed. With the proposed method, the VCI maintains the original PLL control characteristics and improves the PLL robustness under grid frequency deviations. On the basis of the above analysis, a power regulator with the primary frequency and voltage modulation characteristics is analyzed and designed. Meanwhile, a small-signal model of the power loops is established to determine the control parameters. The VCI can accurately output target power and has primary frequency and voltage modulation characteristics that can provide active and reactive power compensation to the grid. Finally, simulation and experimental results are given to verify the idea.

An Antenna-Integrated Oscillator Design Providing Convenient Control over the Operating Frequency and Output Power (동작주파수 및 출력파워 조절이 용이한 신호생성용 안테나 설계)

  • Lee, Dong-Ho;Lee, Jong-In;Kim, Mun-Il
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.54-58
    • /
    • 2006
  • A new design for easily controlling operating frequency of an antenna-integrated planar oscillator is introduced. The oscillator circuit of a broadband negative-resistance active part and a passive load including a patch antenna. The patch resonance is used for determining the oscillation frequency. This design reduces the possibility of mismatch between antenna radiation and oscillation frequencies. To achieve optimum output power, load-pull simulation for the negative-resistance circuit is used. The load-pull simulation shows the feed point and the delay of feed line can affect the oscillation power. Two negative-resistance circuits capable of supporting oscillation over full C-band and X-band are fabricated. The oscillation frequency, output power and phase noise for different patch antennas are measured.

  • PDF

Interference Cancellation System to Prevent the Oscillation of the Wireless Communication System using the Same Frequency (동일 주파수 무선통신 시스템의 발진방지를 위한 간섭잡음제거기)

  • 김선진;김남영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.253-262
    • /
    • 2003
  • In this paper, the interference cancellation system, which is used to cancel the feedback signal in the wireless communication system with the same frequency, is studied. The time varying feedback signal generated from transmitter antenna to receiver antenna reduces the performance of the receiver system. the interference cancellation system using adaptive feedback method(AF-ICS) is suggested to prevent the oscillation of the receiver system and maintain the maximum output power of the power amplifier by the reduction of time-varying feedback signal and also this paper conforms that the oscillation disappears from the output signal by cancellation of the feedback signal and the total output power is satisfied the system specification.

A New DPWM Method to Suppress the Low Frequency Oscillation of the Neutral-Point Voltage for NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1207-1216
    • /
    • 2015
  • In order to suppress the low frequency oscillation of the neutral-point voltage for three-level inverters, this paper proposes a new discontinuous pulse width modulation (DPWM) control method. The conventional sinusoidal pulse width modulation (SPWM) control has no effect on balancing the neutral-point voltage. Based on the basic control principle of DPWM, the relationship between the reference space voltage vector and the neutral-point current is analyzed. The proposed method suppresses the low frequency oscillation of the neutral-point voltage by keeping the switches of a certain phase no switching in one carrier cycle. So the operating time of the positive and negative small vectors is equal. Comparing with the conventional SPWM control method, the proposed DPWM control method suppresses the low frequency oscillation of the neutral-point voltage, decreases the output waveform harmonics, and increases both the output waveform quality and the system efficiency. An experiment has been realized by a neutral-point clamped (NPC) three-level inverter prototype based on STM32F407-CPLD. The experimental results verify the correctness of the theoretical analysis and the effectiveness of the proposed DPWM method.

A Fabrication of the Tilted Waveguide Structure SLD and Its Output Light Power Characteristics (경사 도파로형 고휘도 레이저 다이오드(SLD)의 제작 및 광출력 특성)

  • Choi Young-Kyu;Kim Girae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.55-60
    • /
    • 2006
  • In order to suppress lasing oscillation and obtain high light power, We have proposed a novel SLD which is formed with a straight and tilted waveguide. The window region is used to suppress lasing oscillation and reduce the facet reflectivity. High power and low reflectivity is obtained by the straight and tilted waveguide. Based on the theoretical analysis, we have fabricated the SLD with the waveguide of 500 $\mu$m length and window region of 50 $\mu$m by LPE equipment. Through the measurements of optical characteristics, the output light power of 3 mW was obtained at the 150 mA CW injection current and 25$^{circ}C$. We have confirmed that the proposed SLD has a 0.8 dB spectrum ripple lower than 1 dB which is sufficiently low reflectivity for preventing lasing.

Novel Carrier-Based PWM Strategy of a Three-Level NPC Voltage Source Converter without Low-Frequency Voltage Oscillation in the Neutral Point

  • Li, Ning;Wang, Yue;Lei, Wanjun;Niu, Ruigen;Wang, Zhao'an
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.531-540
    • /
    • 2014
  • A novel carrier-based PWM (CBPWM) strategy of a three-level NPC converter is proposed in this paper. The novel strategy can eliminate the low-frequency neutral point (NP) voltage oscillation under the entire modulation index and full power factor. The basic principle of the novel strategy is introduced. The internal modulation wave relationship between the novel CBPWM strategy and traditional SPWM strategy is also studied. All 64 modulation wave solutions of the CBPWM strategy are derived. Furthermore, the proposed CBPWM strategy is compared with traditional SPWM strategy regarding the output phase voltage THD characteristics, DC voltage utilization ratio, and device switching losses. Comparison results show that the proposed strategy does not cause NP voltage oscillation. As a result, no low-frequency harmonics occur on output line-to-line voltage and phase current. The novel strategy also has higher DC voltage utilization ratio (15.47% higher than that of SPWM strategy), whereas it causes larger device switching losses (4/3 times of SPWM strategy). The effectiveness of the proposed modulation strategy is verified by simulation and experiment results.

The Stabilization Model of Receive Sensitivity of Thick Film Oscillation Circuit for Air Explosion Shell (공중폭발 탄용 후막 발진회로의 수신감도 안정화 모델)

  • Lim, Young-Cheol;Kim, Kwan-Woo;Choi, Jin-Bong;Jung, Young-Gook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • This paper proposes the stabilization modelling method of receive sensitivity of thick film oscillation circuit for air explosion shell. The proposed method minimizes the errors of the thick film oscillator which uses air explosion shell for military and it is very similar to the simulation for maximizing the efficiency. Firstly, the proposed method gets the equation of new form through statistical analysis from the data which shows always fixed and stabilized output from the real model. Secondly, the simulation is designed which is possible to predict the output, after optimization that is a model to match the each electronic component output by the equation. In a conclusion, the usefulness, the accuracy and the precision are proved as compared with the output data of real model.

Control Strategy and Stability Analysis of Virtual Synchronous Generators Combined with Photovoltaic Dynamic Characteristics

  • Ding, Xiying;Lan, Tianxiang;Dong, Henan
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1270-1277
    • /
    • 2019
  • A problem with virtual synchronous generator (VSG) systems is that they are difficult to operate stably with photovoltaic (PV) power as the DC side. With this problem in mind, a PV-VSG control strategy considering the dynamic characteristics of the DC side is proposed after an in-depth analysis of the dynamic characteristics of photovoltaic power with a parallel energy-storage capacitor. The proposed PV-VSG automatically introduces DC side voltage control for the VSG when the PV enters into an unstable working interval, which avoids the phenomenon where an inverter fails to work due to a DC voltage sag. The stability of the original VSG and the proposed PV-VSG were compared by a root locus analysis. It is found that the stability of the PV-VSG is more sensitive to the inertia coefficient J than the VSG, and that a serious power oscillation may occur. According to this, a new rotor model is designed to make the inertial coefficient automatically change to adapt to the operating state. Experimental results show that the PV-VSG control strategy can achieve stable operation and maximum power output when the PV output power is insufficient.

Self Oscillation DC/DC Converter with High Voltage Step Up Ratio (고전압 변환비의 자려 발진 DC/DC Converter)

  • Jung, Yong-Joon;Han, Sang-Kyoo;Hong, Sung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.220-227
    • /
    • 2009
  • A self oscillation DC/DC converter which has a very desirable characteristics of the high input-output voltage conversion ratio for high voltage DC power supply applications is proposed in this paper. The proposed converter is composed of one power switch, one inductor, several capacitors and diodes. Compared with conventional high-voltage DC/DC converters, it performs the high- voltage power conversion using the inductor instead of the bulky step-up transformer. Therefore, it can reduce the size of magnetic device and save the cost. Moreover, since it needs no control IC by using self oscillation circuit and has lower voltage stress on output diodes, it features a lower cost, simpler structure and more improved performance. Finally, a comparative analysis and experimental results are presented to show the validity of the proposed converter.