딥러닝은 심층신경망(Deep Neural Network)을 구축하고 대량의 훈련 데이터를 수집한 후, 구축된 신경망을 오랫동안 학습 시켜야 한다. 만약, 학습이 제대로 진행되지 않거나 과적합이 발생하면, 학습은 실패하게 된다. 현재까지 개발되고 있는 딥러닝 도구들을 사용할 경우, 훈련데이터 수집과 학습에 많은 시간이 소요된다. 하지만, 모바일 환경의 급격한 도래와 센서 데이터의 증가로 인해, 신경망 학습에 걸리는 시간을 획기적으로 줄일 수 있는 실시간 증강형 딥러닝 기술에 대한 요구가 급격하게 증가하고 있다. 본 연구에서는 미세먼지 센서를 장착한 아두이노 시스템을 사용하여 실시간 증강형 딥러닝 시스템을 구현 하였다. 구현된 시스템에서는 미세먼지 데이터를 5초마다 측정하고 최대 120개가 축적이 되면, 기존에 축적된 데이터와 새로이 축적된 데이터를 데이터셋으로 사용하여 학습을 수행하도록 하였다. 학습 수행을 위한 신경망은 입력층 1개, 은닉층 1개, 출력등 1개로 구성하였다. 구현된 시스템에 대한 성능을 평가하기 위해 학습 시간과 평균 제곱근 오차(root mean square error, RMSE)를 측정 하였다. 실험 결과, 평균 학습 오차는 0.04053796이었으며, 학습주기당(1 에포크) 평균 학습 시간은 3,447 초 정도의 시간이 걸렸다.
천수방정식(shallow water equations, SWE)은 물의 거동을 수치적으로 해석하기 위한 지배방정식으로 수리수문 분야에 널리 활용되고 있으며, 비선형 연립방정식으로 일반적으로 수치적으로 해석할 수 있다. 하지만 기존의 여러 수치 해석법은 격자망 생성에 민감하며 복잡한 지형에서의 해석에 한계가 발생할 수 있다. 이러한 한계점을 극복하기 위하여 본 연구에서는 물리 정보 신경망(Physics-Informed Neural Networks, PINNs)을 사용하고자 하였다. PINNs은 물리 법칙을 신경망에 직접적으로 도입하여 지배방정식을 해석하고자 하는 기법이며 지배 방정식에 대한 물리적, 수학적 정보를 손실함수로 변환하여 최적화하고 해를 산정할 수 있다. 본 연구에서는 지배방정식을 PINNs 구조 내에서 사용할 수 있도록 신경망 구조, 학습 전략, 데이터 생성 기술과 같은 포괄적인 방법론을 제시하고 결과를 ANN 기법과 비교하였다. 물리적 사전지식이 반영되지 않은 ANN과 달리 PINNs은 천수방정식에 대하여 매우 정확한 수치적 솔루션을 효과적으로 제공하는 것으로 나타났다. 따라서 PINNs은 지배방정식의 수치해석적 연구에 많은 잠재력이 있는 것으로 판단되며, 정확하고 효율적인 천수방정식의 솔루션을 위한 기법으로 활용될 수 있을 것으로 기대된다.
본 연구는 국내 의료기관 중심 보건의료·복지통합 서비스 활성 방안을 모색하기위하여 대구의료원 달구벌건강주치의사업, 삼척의료원 301 네트워크 사업, 부산의료원 3 for 1 사업 을 프로그램 논리모형을 적용하여 사례 비교하였다. 상황적 측면에서 세 사업 모두 보건의료·복지 서비스의 분절과 의료사각지대 문제를 해결하기 위해 고안되었으며, 투입 요소 중 인력은 모두 다학제 팀 구성 현황은 유사하였으나 구체적인 구성 분야, 채용 규모, 고용 형태, 에서는 기관별 차이가 있었다. 예산을 지원받는 재원 출처의 차이로 각 사업은 지역사회와 협력하고 지원하는 방식과 향후 방향성에서의 차별성도 확인할 수 있었다. 산출은 수혜대상자 수와 진료 건수에 차이가 있었으며, 투입인력 또는 운영비 대비실인원 수, 수혜대상 1인당 사업비 비교시 다른 결과를 확인하였다. 의료기관 중심의 보건의료·복지 통합제공체계의 설계 시 우선적으로 권고하는 상황은 안정적인 기금마련 기전을 확보하고 이에 합당한 대상자와 서비스 전달체계를 구축하라는 것이다. 또한, 의료기관 내 사례관리 전담기구로서 각 부문의 활동을 연계할 수 있도록 위탁이 아닌 전담부서 설치, 적정 규모의 채용, 안정적 고용 체계가 필요하며, 민·관 협력 및 경증부터 중증까지 제공할 수 있는 포괄적 제공체계 구축을 제안한다. 이를 통해 의료기관 중심보건의료복지 통합 서비스 제공 사업은 지역사회에서 풀리지 않는 난제였던 보건의료 서비스 강화와 촘촘한 연계를 가능하게 함으로 궁극적인 지역사회 건강안전망 역할 강화를 기대한다.
본 논문에서는 동해 천해 영역에서 예인 음원과 L-자형 수신 선배열을 이용한 해상 실험(MAPLE IV)을 통해 수집된 신호 자료에 대해 정합장처리를 이용한 지음향 역산 및 음원 위치 추정을 수행하였다. L-자 형태의 수신 선배열은 수직 선배열과 해저면에 수평으로 놓여진 수평 선배열로 구성되어 있으며, 음원은 협대역 다중 주파수 성분을 가지는 저주파 연속 음원이 예인되었다. 역산 목적함수는 선배열 수신 신호벡터 처리 방식에 따라 다음과 같이 Bartlett 프로세서를 기반으로 한 세 가지 형태 - (1) 수직 및 수평선배열 자료 전체를 하나의 신호 벡터로 상관 처리할 경우, (2) 수직 및 수평선배열 각각에 대한 결과를 비상관 평균할 경우, (3) 수직 및 수평선배열 상호간의 상관 관계만을 이용할 경우- 를 사용하고 그 결과들을 수직 및 수평 선배열 신호를 단독으로 사용할 경우의 결과들과 함께 비교하였다. 역산 결과의 타당성을 확인하기 위해 역산 과정에서 사용한 각 프로세서와 역산된 지음향 인자를 이용하여 낮은 신호 대 잡음비를 갖는 주파수 성분에 대해 음원 위치 추정을 수행하고 성능을 비교하였다.
마이크로폰의 주파수 응답 특성은 마이크로폰이 레벨 허용 범위로 재생할 수 있는 주파수 범위를 나타내는 것으로, 마이크로폰이 가지고 있는 특성을 평가하는 기준으로 사용되는 가장 중요한 음향 특성 파라메타 중의 하나이다. 이와 같은 마이크로폰의 주파수 응답 특성을 측정하기 위한 기존의 방법들은 그 측정 조건이 매우 까다로울 뿐만 아니라, 고가의 장비를 사용하여 측정하여야 한다는 문제점을 갖고 있다. 이러한 단점을 보완하기 위하여 본 논문에서는 마이크로폰의 주파수 응답 특성을 간단하게 측정할 수 있는 알고리즘을 제안한다. 제안한 알고리즘은 컴퓨터로 생성한 Optimized Aoshima's Time Stretched Pulse(OATSP) 신호를 표준 스피커를 통하여 발생시킨 다음, 측정하고자 하는 마이크로폰으로 수음된 신호와 역 OATSP 신호를 컨볼루션시켜 마이크로폰의 임펄스 응답을 측정하고, 이 신호를 이용하여 측정할 마이크로폰의 주파수 응답 특성을 구하는 방범이다. 제안한 알고리즘의 성능 평가는 제안한 알고리즘을 이용하여 구한 마이크로폰의 주파수 응답 특성 측정값과 그들이 갖고 있던 주파수 응답 특성 데이터를 비교 분석하였다. 비교 결과, 측정한 각각의 마이크로폰 주파수 응답 특성들 사이에 오차가 발생하였으나, 오차가 그 측정값들이 허용 오차(${\pm}3{\sim}{\pm}5dB$) 범위에 내에 있었으므로 제안한 알고리즘이 마이크로폰의 주파수 응답 특성을 측정하기에 적합한 방법임을 입증하였다.
Objective: To evaluate the performance of a convolutional neural network (CNN) model that can automatically detect and classify rib fractures, and output structured reports from computed tomography (CT) images. Materials and Methods: This study included 1079 patients (median age, 55 years; men, 718) from three hospitals, between January 2011 and January 2019, who were divided into a monocentric training set (n = 876; median age, 55 years; men, 582), five multicenter/multiparameter validation sets (n = 173; median age, 59 years; men, 118) with different slice thicknesses and image pixels, and a normal control set (n = 30; median age, 53 years; men, 18). Three classifications (fresh, healing, and old fracture) combined with fracture location (corresponding CT layers) were detected automatically and delivered in a structured report. Precision, recall, and F1-score were selected as metrics to measure the optimum CNN model. Detection/diagnosis time, precision, and sensitivity were employed to compare the diagnostic efficiency of the structured report and that of experienced radiologists. Results: A total of 25054 annotations (fresh fracture, 10089; healing fracture, 10922; old fracture, 4043) were labelled for training (18584) and validation (6470). The detection efficiency was higher for fresh fractures and healing fractures than for old fractures (F1-scores, 0.849, 0.856, 0.770, respectively, p = 0.023 for each), and the robustness of the model was good in the five multicenter/multiparameter validation sets (all mean F1-scores > 0.8 except validation set 5 [512 x 512 pixels; F1-score = 0.757]). The precision of the five radiologists improved from 80.3% to 91.1%, and the sensitivity increased from 62.4% to 86.3% with artificial intelligence-assisted diagnosis. On average, the diagnosis time of the radiologists was reduced by 73.9 seconds. Conclusion: Our CNN model for automatic rib fracture detection could assist radiologists in improving diagnostic efficiency, reducing diagnosis time and radiologists' workload.
The polymer crystallization process, promoting the formation of ferroelectric β-phase, is essential for developing polyvinylidene fluoride (PVDF)-based high-performance piezoelectric energy harvesters. However, traditional high-temperature annealing is unsuitable for the manufacture of flexible piezoelectric devices due to the thermal damage to plastic components that occurs during the long processing times. In this study, we investigated the feasibility of introducing a flash lamp annealing that can rapidly induce the β-phase in the PVDF layer while avoiding device damage through selective heating. The flash light-irradiated PVDF films achieved a maximum β-phase content of 76.52% under an applied voltage of 300 V and an on-time of 1.5 ms, a higher fraction than that obtained through thermal annealing. The PVDF-based piezoelectric energy harvester with the optimized irradiation condition generates a stable output voltage of 0.23 V and a current of 102 nA under repeated bendings. These results demonstrate that flash lamp annealing can be an effective process for realizing the mass production of PVDF-based flexible electronics.
대형언어모형(LLM)을 현실에 적용하려는 지속적인 노력에도 불구하고, 인공지능이 맥락을 이해하고 사람의 의도에 맞게 사회적 지지를 제공하는 능력은 아직 제한적이다. 본 연구에서는 LLM이 사람의 감정 상태를 추론하도록 유도하기 위해, 심리 치료 이론을 기반으로 한 공감 체인(Chain of Empathy, CoE) 프롬프트 방법을 새로 개발했다. CoE 기반 LLM은 인지-행동 치료(CBT), 변증법적 행동 치료(DBT), 인간 중심 치료(PCT) 및 현실 치료(RT)와 같은 다양한 심리 치료 방식을 참고하였으며, 각 방식의 목적에 맞게 내담자의 정신 상태를 해석하도록 설계했다. CoE 기반 추론을 유도하지 않은 조건에서는 LLM이 사회적 지지를 구하는 내담자의 글에 주로 탐색적 공감 표현(예: 개방형 질문)만을 생성했으며, 추론을 유도한 조건에서는 각 심리 치료 모형을 대표하는 정신 상태 추론 방법과 일치하는 다양한 공감 표현을 생성했다. 공감 표현 분류 과제에서 CBT 기반 CoE는 감정적 반응, 탐색, 해석 등을 가장 균형적으로 분류하였으나, DBT 및 PCT 기반 CoE는 감정적 반응 공감 표현을 더 잘 분류하였다. 추가로, 각 프롬프트 조건 별로 생성된 텍스트 데이터를 정성적으로 분석하고 정렬 정확도를 평가하였다. 본 연구의 결과는 감정 및 맥락 이해가 인간-인공지능 의사소통에 미치는 영향에 대한 함의를 제공한다. 특히 인공지능이 안전하고 공감적으로 인간과 소통하는 데 있어 추론 방식이 중요하다는 근거를 제공하며, 이러한 추론 능력을 높이는 데 심리학의 이론이 인공지능의 발전과 활용에 기여할 수 있음을 시사한다.
상업용 회절 광학 소자를 통한 레이저 빔결합 연구를 위해 시드 공유형 3 채널 광섬유 레이저와 위상 제어 시스템을 제작하였다. 회절 광학소자에 입사되는 빔의 각도를 조절하여 빔결합을 실시하고, 이 때 각 빔의 위상을 제어하여 결합된 빔의 세기가 최대가 되도록 하였다. 소자를 투과하기 전 3 채널 레이저의 출력은 약 65 mW이다. 결합된 빔의 세기는 각 채널의 위상 변화에 따라 2.9-48.3 mW로 변화하였으며, 45초간의 위상제어를 통해 결합된 빔의 출력은 42 mW로 전체 시간의 91.8% 이상의 구간에서 출력을 유지할 수 있었다. 본 연구에서 더 나아가 향후 회절 광학 소자의 효율을 높이고 위상 제어 시스템의 성능을 개선함으로써 빔결합 효율을 더 높일 수 있을 것으로 기대된다.
앙상블 분류기란 개별 분류기보다 더 좋은 성과를 내기 위해 다수의 분류기를 결합하는 것을 의미한다. 이와 같은 앙상블 분류기는 단일 분류기의 일반화 성능을 향상시키는데 매우 유용한 것으로 알려져 있다. 랜덤 서브스페이스 앙상블 기법은 각각의 기저 분류기들을 위해 원 입력 변수 집합으로부터 랜덤하게 입력 변수 집합을 선택하며 이를 통해 기저 분류기들을 다양화 시키는 기법이다. k-최근접 이웃(KNN: k nearest neighbor)을 기저 분류기로 하는 랜덤 서브스페이스 앙상블 모형의 성과는 단일 모형의 성과를 개선시키는 데 효과적인 것으로 알려져 있으며, 이와 같은 랜덤 서브스페이스 앙상블의 성과는 각 기저 분류기를 위해 랜덤하게 선택된 입력 변수 집합과 KNN의 파라미터 k의 값이 중요한 영향을 미친다. 하지만, 단일 모형을 위한 k의 최적 선택이나 단일 모형을 위한 입력 변수 집합의 최적 선택에 관한 연구는 있었지만 KNN을 기저 분류기로 하는 앙상블 모형에서 이들의 최적화와 관련된 연구는 없는 것이 현실이다. 이에 본 연구에서는 KNN을 기저 분류기로 하는 앙상블 모형의 성과 개선을 위해 각 기저 분류기들의 k 파라미터 값과 입력 변수 집합을 동시에 최적화하는 새로운 형태의 앙상블 모형을 제안하였다. 본 논문에서 제안한 방법은 앙상블을 구성하게 될 각각의 KNN 기저 분류기들에 대해 최적의 앙상블 성과가 나올 수 있도록 각각의 기저 분류기가 사용할 파라미터 k의 값과 입력 변수를 유전자 알고리즘을 이용해 탐색하였다. 제안한 모형의 검증을 위해 국내 기업의 부도 예측 관련 데이터를 가지고 다양한 실험을 하였으며, 실험 결과 제안한 모형이 기존의 앙상블 모형보다 기저 분류기의 다양화와 예측 성과 개선에 효과적임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.