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Abstract

Shallow water equations (SWE) serve as fundamental equations governing the movement of the water. Traditional numerical 

approaches for solving these equations generally face various challenges, such as sensitivity to mesh generation, and numerical 

oscillation, or become more computationally unstable around shock and discontinuities regions. In this study, we present a novel 

approach that leverages the power of physics-informed neural networks (PINNs) to approximate the solution of the SWE. PINNs 

integrate physical law directly into the neural network architecture, enabling the accurate approximation of solutions to the SWE. We 

provide a comprehensive methodology for formulating the SWE within the PINNs framework, encompassing network architecture, 

training strategy, and data generation techniques. Through the results obtained from experiments, we found that PINNs could be an 

accurate output solution of SWE when its results were compared with the analytical method. In addition, PINNs also present better 

performance over the Artificial Neural Network. This study highlights the transformative potential of PINNs in revolutionizing water 

resources research, offering a new paradigm for accurate and efficient solutions to the SVE.
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요  지

천수방정식(shallow water equations, SWE)은 물의 거동을 수치적으로 해석하기 위한 지배방정식으로 수리수문 분야에 널리 활용되고 있으며, 

비선형 연립방정식으로 일반적으로 수치적으로 해석할 수 있다. 하지만 기존의 여러 수치 해석법은 격자망 생성에 민감하며 복잡한 지형에서의 해

석에 한계가 발생할 수 있다. 이러한 한계점을 극복하기 위하여 본 연구에서는 물리 정보 신경망(Physics-Informed Neural Networks, PINNs)을 

사용하고자 하였다. PINNs은 물리 법칙을 신경망에 직접적으로 도입하여 지배방정식을 해석하고자 하는 기법이며 지배 방정식에 대한 물리적, 수

학적 정보를 손실함수로 변환하여 최적화하고 해를 산정할 수 있다. 본 연구에서는 지배방정식을 PINNs 구조 내에서 사용할 수 있도록 신경망 구

조, 학습 전략, 데이터 생성 기술과 같은 포괄적인 방법론을 제시하고 결과를 ANN 기법과 비교하였다. 물리적 사전지식이 반영되지 않은 ANN과 

달리 PINNs은 천수방정식에 대하여 매우 정확한 수치적 솔루션을 효과적으로 제공하는 것으로 나타났다. 따라서 PINNs은 지배방정식의 수치해석

적 연구에 많은 잠재력이 있는 것으로 판단되며, 정확하고 효율적인 천수방정식의 솔루션을 위한 기법으로 활용될 수 있을 것으로 기대된다.

핵심용어: 천수방정식, 물리 정보 신경망, 인공신경망
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1. Introduction

The Shallow Water Equations (SWE)(de Saint-Venant, 

1871) serve as a core mathematical model for describing the 

behavior of water flow in rivers, lakes, estuaries, and coastal 

regions (Bates et al., 2005; Hodges, 2019; Soares-Frazao et 

al., 2012). These equations, derived from the principles of 

conservation of mass and momentum, are widely used in 

hydrology, hydraulic and environmental engineering for 

predicting water levels, velocities, and the propagation of 

waves in such natural water systems (Bates et al., 2010; 

Ferrari et al., 2019; Van et al., 2016; Viero and Valipour, 

2017).

Traditionally, numerical methods have been employed to 

solve SWE, such as finite difference (Kuffour et al., 2020; 

Lundgren and Mattsson, 2020), finite volume (An and Yu, 

2014; Bermúdez et al., 1998; Cea and Bladé, 2015), and finite 

element methods (Ayog et al., 2021; Hai et al., 2008; West 

et al., 2017). Although these methods have made substantial 

contributions, they also demand greater effort and necessitate 

a profound comprehension of the inherent characteristics of 

SWE, including nonlinearity (Valiani and Caleffi, 2019), 

discontinuity, and shockwaves (Lu et al., 2020; Marras et al., 

2018).

In recent years, machine learning (ML) and deep learning 

(DL) have received a lot of attention for the solution of partial 

differential equations (Beck et al., 2019; Han et al., 2018; 

Sirignano and Spiliopoulos, 2018). Furthermore, there have 

been also attempts to apply data-driven-based algorithms for 

the solutions of problems related to SWE (Guo et al., 2021; 

Kabir et al., 2020; Liu and Pender, 2015). In this type of 

approach, ML and DL are used to approximate the non-linear 

relationship between inputs and outputs obtained by numeri-

cal solver or simulated models. These models are generally 

referred to as surrogate models. However, one of the limi-

tations of this approach is that the surrogate model often 

requires a sufficiently large amount of data in the training 

process (Vijayaraghavan et al., 2023). It could be computa-

tionally expensive to achieve data for training.

A novel computational framework has emerged, lever-

aging the power of physics-informed neural networks (PINNs), 

which combines the strengths of deep learning and governing 

physics equations to provide a robust and efficient approach 

to solving complex problems in various scientific and engi-

neering problems (Lu et al., 2021; Mao et al., 2020; Raissi 

et al., 2019). One of the key advantages of PINNs is their 

ability to handle partial differential equations (PDE) with 

complex boundary conditions and spatiotemporal dynamics. 

Meanwhile, traditional numerical methods often struggle 

with high dimensionality, requiring significant computa-

tional resources and effort (Ni et al., 2020; Vacondio et al., 

2014). In contrast, PINNs provide an elegant and efficient 

alternative by learning the underlying physics directly from 

data (Karniadakis et al., 2021). In addition, PINNs utilize 

automatic differentiation to represent differential operators, 

eliminating the explicit requirement for mesh generation (Cai 

et al., 2021). This data-driven approach circumvents the need 

for explicit analytical formulations or discretization schemes, 

making PINNs highly versatile and adaptable to a wide range 

of problems (Gao et al., 2021; Jagtap et al., 2022; Karniadakis 

et al., 2021; Lu et al., 2021; Zobeiry and Humfeld, 2021). 

Furthermore, through the inclusion of constraint PDEs in the 

loss function, the solutions obtained from PINNs are compel-

led to adhere to the underlying physics phenomena, facili-

tating their interpretability (Karniadakis et al., 2021; Ren et 

al., 2023; Xu et al., 2022).

Despite the substantial growth of research aimed at 

enhancing the PINNs algorithm, research on PINNs in the 

field of hydrology and water resources remains relatively 

scarce (Chen et al., 2023; Feng et al., 2023). Tartakovsky et 

al. (2020) proposed a PINNs method that estimates hydraulic 

conductivity in a subsurface flow environment. In a study by 

Bandai and Ghezzehei (2022), it was shown that PINNs 

employing locally layer-wise adaptive activation functions 

can yield solutions to the one-dimensional Richards’ equation 

that are comparable in accuracy to traditional numerical 

methods. The seamless integration of deep learning with 

SWE is also presented in previous studies. Feng et al. (2023) 

introduced a novel framework capable of assimilating diverse 

types of observations and directly solving the 1D Saint- 

Venant Equations. Notably, their study demonstrates the 

effectiveness of PINN-based downscaling, which incor-

porates observational data to generate more realistic subgrid 

solutions for along-channel water depth. The literature 
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reviews discussed above highlight the potential efficacy of 

PINNs in approximating solutions to SWE. However, despite 

this potential promise, the widespread adoption of PINNs 

for solving the SWE system remains somewhat limited. 

Additionally, there is a distinct need for a deeper exploration 

of data-driven methodologies in approximating solutions to 

the SWEs. For instance, questions regarding the comparative 

efficiency of PINNs versus conventional Artifical Neural 

Network (ANN) models remain unaddressed. Moreover, the 

implications of data distribution on the accuracy and precision 

of PINNs model have yet to be systematically elucidated. This 

necessitates a comprehensive investigation into the perfor-

mance and data sensitivity of PINNs in the context of SWE 

solutions.

As a consequence, the main objective of this paper is to 

explore the capabilities of PINNs for solving shallow water 

equations and to assess their effectiveness in accurately 

approximating water flow dynamics. We present a comprehen-

sive methodology that encompasses the mathematical formul-

ation of the SWE, the architecture and training strategy 

employed in PINNs, and the data generation techniques used 

for modeling training and validation. Our study endeavors to 

underscore the competence and efficacy of PINNs in accurately 

capturing and simulating fluid flow behavior. This investigation 

considers scenarios involving both steady flow conditions and 

instances characterized by highly pronounced fluctuations in 

flow. Initially, we analyze PINNs' capabilities concerning non-

breaking wave propagation experiments. Subsequently, we 

extend this assessment to a more intricate scenario involving 

the utilization of PINNs for simulating dam failure. Moreover, 

our study rigorously evaluates PINNs' ability to approximate 

solutions, employing comparisons with ANNs and examining 

the influence of data point distribution on the precision and 

reliability of the PINNs model outputs. Ultimately, this explo-

ration accentuates the advantages and potentials inherent in the 

application of PINNs within fluid dynamics simulations.

The rest of the paper is formulated into the following 

sections: Section 2 presents briefly SWE and the structure of 

PINNs, Section 3 presents experiments in the current study, 

and Section 4 presents results and discussions. The main 

finding of the study will be concluded in Section 5.

2. Methodology

2.1 Shallow Water Equations (SWE)

The governing equations, represented by Eqs. (1) and (2), 

are derived from the 1D shallow water equations. These 

equations are a fundamental mathematical model and are 

generally utilized to describe the behaviors of water in the 

channels and rivers. The shallow water equations are derived 

from the principles of mass and momentum conservation, 

assuming incompressibility and negligible vertical velocities.




 



  (1)




 



 



  






  (2)

In the given equations,  represents the water depth (m), 

 denotes the water velocity (m/s),   corresponds to the 

acceleration due to gravity (m2/s), So represents the bed slope.

2.2 Physics-informed Neural Networks (PINNs)

In this study, the solutions of 1D-SWE are approximated 

by PINNs, instead of by numerical methods. Fig. 1 illustrates 

an artificial neural network (ANN) that takes spatiotemporal 

coordinates as input data and approximates the correspon-

ding variables of interest in SWE.

Eq. (3) describes the fully connected nature of the neural 

network architecture employed in this study. The network 

consists of l hidden layers, with N neurons in each hidden 

layer. The inputs of the ith layer () are obtained by 

connecting the results of the previous layer (). This 

interconnected structure enables the flow of information 

throughout the network, facilitating the transformation and 

computation required to generate the desired outputs.

       (3)

The weight matrix () and bias vector () at the lth layer 

are parameters that are determined through the training 

process. These parameters play a crucial role in the neural 

network's ability to capture the desired behavior. The 

activation function () introduces nonlinearity to each output 
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component, aiding in the network's ability to model complex 

relationships. In the current work, the tanh () is selected as 

an activation function. The  and  are initialized using the 

Xavier scheme. The loss function presented in Eq. (4) includes 

two components. The first component involves the MSE 

between the ANN approximation and the boundary condition 

(BC) and initial condition (IC) data. The second component 

is the residuals of the PDEs, which are the summed residual 

errors of Eqs. (1) and (2) when using  and  as inputs. By 

incorporating both the PDE residuals and the data errors, this 

comprehensive loss function ensures that the network cap-

tures the governing physics and effectively approximates the 

solution to the problem, optimizing the network's performance.

  
  



 


 (4)

While , , and  present with weight loss of BC, IC, 

and PDE, respectively. The loss of each component in Eq. (4) 

is presented below:





 
∣

∣



 




∥
  

   

∥

 (5)





 
∣

∣



 




∥
  

   

∥

 (6)





 
∣

∣



 




∥
  

   

∥

 (7)




  
∣∣



 



∥
 

  
 ∥ (8)

The importance of weighting coefficients () in the loss 

function (Eq. (4)) for training PINNs has been highlighted in 

previous studies (Feng et al., 2023; Wang et al., 2021). These 

coefficients play a crucial role in balancing the contributions 

of different loss terms, as an imbalance can hinder the con-

vergence of the PINNs solution. Selecting appropriate 

weights is problem-dependent, as the optimal combination 

varies based on system properties and conditions. Typically, 

weights are tuned through trial-and-error procedures or 

empirically selected methods (Lee et al., 2022; Raissi et al., 

2019; Zhang, 2022) because this method is relatively easy to 

implement. However, this method has been demonstrated to 

be time-consuming in looking for optimal parameters (Feng 

et al., 2023; Jin et al., 2021). Recently, McClenny and Braga- 

Neto (2020) have proposed a self-adaptive weight approach 

for automatically tuning the weights in the training process. 

Although, this method could provide acceptable accuracy, 

however, it also substantially increases the computational 

demand. To get out of the above situation, in this study, an 

effective method has been demonstrated in previous study 

Fig. 1. The diagram illustrates the configuration of PINNs for solving the SWE. On the left side, an uninformed neural network (NN), while on 

the right side, an informed NN is depicted, incorporating the conservation law. Both neural networks share the same set of 

hyperparameters and contribute to the overall loss function during training
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(Chen et al., 2023; Feng et al., 2023; Wang et al., 2021) was 

adopted. This method employs dynamic weighting coeffi-

cients to scale various loss terms, ensuring balanced gradients 

during the back-propagation process of ANN training. The 

weighting coefficients are updated at each iteration of the 

training based on the previous iteration's loss (Loss). The 

formulation of the ANN parameters is defined by Eq. (9).

    ∣∇   


 ∣ (9)

The   at the    th iteration is calculated using the 

learning rate () and the current iteration step () according 

to the equation:

 





max∣∣
 (10)

The updated weighting coefficients are calculated using a 

moving average approach.

     (11)

The hyperparameter , with a value of 0.9 as suggested by 

Feng et al. (2023) and Wang et al. (2021), controls the decay 

rate of the previous weight to maintain stability during 

training. The optimization of the DNN in PINNs is employed 

with the Adam optimizer. To facilitate convergence toward 

the correct solution, it is crucial to normalize the input data. 

Consequently, both spatial and temporal variables are 

mapped to the interval [-1, 1], where the input vector X 

corresponds to the concatenated value of  and . This 

normalization step is essential to enhance the efficiency and 

accuracy of the PINNs model (Raissi et al., 2019).

 
max  min

  min
 (12)

3. Experiments

As stated above, the main aim of this study is to explore 

the ability of PINNs to solve SWE. For that reason, the PINNs 

framework formulated in Section 2 will be applied to experi-

ments. Specifically, a nonbreaking wave propagation problem 

(Bates et al., 2010; Feng et al., 2023; Hunter et al., 2005), 

which exists analytical solution under certain assumptions 

will be selected. After that, a comprehensive evaluation was 

carried out to compare the solution obtained from PINNs with 

the analytical solution.

3.1 Nonbreaking wave propagation 

By considering flow over a planar surface, the continuity 

and momentum equations of the shallow water can be 

expressed in a simplified 1D form. Consequently, Eqs. (13) 

and (14) can be reformulated as follows:




 



  (13)




  







  (14)

Assuming a constant flow velocity over space and time, we 

can introduce a moving boundary condition where    

= 0 at    Given that,  = 0, the analytical solution for 

 can be obtained by integrating the equation directly and 

incorporating the moving boundary condition.

 This yields the following expression:

   



 (15)

 The boundary condition at  = 0 is obtained from the 

analytical solutions: 

   



 (16)

 For the simulation duration of 7200s, the reference 

solution in Eq. (15) is computed with the values u = 1 (m/s) 

and n = 0.01 (m-1/3s).

3.2 Dam breaking

Dam-breaking involves the phenomena of the sudden 

release of stored water due to the failure or breach of a dam 
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structure. In the event of a dam failure, the flow characteristics 

frequently manifest through phenomena such as discont-

inuities and shockwaves. For the 1D dam break simulation, 

the governing equations were described by Eq. (17).











    

   







 
 (17)

Where h is present for water depth (m), u is water velocity 

(m/s) and g is gravity acceleration. This study evaluates the 

ability of PINNs to simulate the behavior of the dam break 

problem. Specifically, how PINNs could be handled with the 

existence of discontinuities and shockwaves. 

Fig. 2 depicts the schematic representation of a 1D dam 

structure employed for simulating dam failure. The simul-

ation domain is confined within the x range of (-5, 5), and the 

temporal scope spans from t = 0 to t = 1. Initial conditions were 

prescribed as follows: h (x, 0) = 3 (m) for x less than or equal 

to zero, and h = 1 (m) for x greater than 0, with an initial 

velocity of 0(m/s). To assess the accuracy of PINNs in this 

scenario, we initially utilized a numerical method (Finite 

Volume Method) to approximate the solution in Eq. (17). 

Subsequently, PINNs were employed to track the flow 

dynamics associated with dam failure.

3.3 Setting-up experiment

In our study, we investigated the performance of the PINNs 

model in approximating the 1D shallow water wave equation 

through a series of experiments. In Experiment 1, we 

constructed a PINNs framework with 6 hidden layers, each 

containing 64 neurons, to approximate the solution of the 

nonbreaking wave problem. This experiment provided 

valuable insights into the PINNs model's efficacy in this 

context. By using the identical manner as in Experiment 1, 

the accuracy of PINNs was investigated in situations existing 

shocking and discontinuous in Experiment 2. Furthermore, 

to understand the benefits of utilizing the PINNs model in 

comparison to the ANN model, we conducted Experiment 3. 

Notably, the structural configuration of the ANN model 

remained identical to that of the PINNs, with the sole excep-

tion being the inclusion of the governing equation. This 

comparative analysis shed light on the advantages of choosing 

the PINNs model over the conventional ANN approach. 

Additionally, the distribution of residual point collection 

within the domain of interest played a significant role in the 

performance of the PINNs model, as has been highlighted in 

prior research. In Experiment 4, we examined how the 

accuracy of the SWEs solution was influenced by the choice 

of collection point distribution. Two distinct collection point 

schemes, namely random sampling and selective sampling, 

were employed in this experiment to comprehensively 

understand the impact of data distribution on the accuracy of 

the PINNs model in approximating the SWEs. 

The performance of the PINNs framework was assessed 

by calculating relative L2 error and root mean squared error 

(RMSE) using the following equations:

  





  







  



 


 (18)

  






  



   
  (19)

where  and  are the water level (m) estimated from PINNs 

(or ANN in Experiment 2) and analytical method, respectively.

4. Results and Discussion

 In this section, the results of three experiments are 

presented and discussed, following the configurations des-

cribed in Section 3.

Fig. 2. Schema for 1D dam failure simulation
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4.1 Dose the PINN method effectively approximate the 

outcomes of the conventional method?

This first experiment serves to demonstrate the effec-

tiveness of PINNs in solving simplified SWE with moving 

boundaries. The focus is on comparing the spatial-temporal 

evolution of water depth obtained from the analytical solution 

with PINNs. 

By incorporating a limited set of IC and BC, along with the 

information from collection points within the calculation of 

the domain, PINN showcases its ability to accurately approxi-

mate the dynamic behavior of the water level. In addition, the 

results represented in Fig. 3 also indicate that PINNs can 

capture the underlying physics of the system and learn to 

simulate the evolution of water depth over time. 

By leveraging the flexibility and adaptability of PINNs, the 

comparison of water surface elevation presented in Fig. 4 

indicates that PINNs are capable of effectively approxi-

mating the complex interactions and dynamics involved in 

the SWE problem with a moving boundary with almost 

insignificant differences. This allows for a more accurate 

representation of the real-world scenario compared to the 

traditional methods. In the field of hydrodynamics and 

coastal engineering, accurate predictions of water depth 

evolution are essential for designing and maintaining coastal 

structures, managing coastal erosion, and assessing flood 

risk. Furthermore, the relatively low difference which was 

plotted in Fig. 3(c) offers a new approach for various practical 

applications, and can potentially complement traditional 

methods, providing more efficient and accurate solutions for 

Fig. 3. The dynamic of water level of (a) analytical method, (b) PINNs, 

and (c) is the difference between the analytical method and 

PINNs. The green, red, and black points are data of the initial, 

boundary, and collection conditions, respectively

Fig. 4. Water surface elevation estimated from PINNs at different time steps
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realistic applications.

4.2 How PINNs deal with the existence of discontinuous 

and shocking?

Experiment 2 aims to assess the efficacy of PINNs in 

handling a particularly challenging scenario- the simulation 

of dam failure, known for its complexity and difficulty even 

for traditional numerical methods.

The disparity between the outcomes derived from the 

numerical method and the PINNs method appears negligible. 

Fig. 5 illustrates the spatiotemporal evolution of water depth. 

A comparative analysis between the PINN-derived out-

comes and those from the numerical method reveals that the 

PINNs approach adeptly captures the overarching trends. 

Simultaneously, the diagrams displaying the spatial variation 

of water depth at different time intervals, as depicted in Figs. 

5(c) and 5(d), underscore the capacity of PINNs to appro-

ximate solutions to the 1D SVEs equation. This is particularly 

notable in scenarios involving discontinuities and shock-like 

phenomena. Nonetheless, the visual examination in Fig. 5(b) 

underscores that the solution derived from the PINNs method 

does not encompass the entirety of water depth variations as 

comprehensively as the numerical method's outcomes. This 

distinction becomes particularly evident towards the conclu-

sion of the simulation period and in the downstream region 

of the dam. The preceding analysis indicates that PINNs 

exhibit a commendable capacity in solving the SVE equation 

system. Nevertheless, in specific scenarios, such as those 

encountered in Experiment 2 of this study, where abrupt flow 

fluctuations arise, the accuracy of PINNs has not attained 

parity with solutions derived from numerical methods.

4.3 What are the comparative advantages of the PINN 

in contrast to the ANNs?

The primary objective of this experiment is to evaluate and 

compare the performance of PINNs against ANN in terms of 

their respective merits. Specifically, the goal is to determine 

the merits of PINNs over ANN, which are renowned for their 

Fig. 5. Spatial and temporal distribution of water depth from numerical method (NMM) (a); the water approximated by PINNs (b); The graph 

of water depth at t = 40 (s) and t = 100 (s) in (c) and (d), respectively. The green points and black points in (a) present for initial condition 

and residual points
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high performance and perceived difficulty to surpass in terms 

of accuracy. Fig. 6 displays the spatial and temporal distri-

bution of input data for two models: ANNs (Fig. 6(a)) and 

PINNs (Fig. 6(b)). Green dots signify the initial condition, 

while red dots denote the boundary condition. Notably, the 

primary distinction between these models resides in their 

input data. While both models utilize initial and boundary 

conditions as inputs, the PINNs model integrates additional 

data from collection points to enhance the optimization of the 

loss function detailed in Eq. (5). Notably, the inter-model 

hyperparameters, such as model structure, activation function, 

and optimization function, are identical, facilitating a more 

straightforward assessment of their accuracy.

Table 1 presents a comprehensive comparison of the per-

formance between PINNs and ANNs for Experiment 2. The 

table includes essential details concerning the number of 

input data points utilized by both models. The results demon-

strated in Table 1 clearly indicate that the PINNs model 

outperforms the ANN model. Notably, the most compelling 

evidence of superior performance lies in the significantly 

lower error achieved by the PINNs model, despite it having 

the same structure as the ANN model, except for constraint 

of PDE part. Specifically, the L2 error for ANN is 5.360e-2 

(m), while the PINNs model achieves a lower L2 error of 

3.638e-2(m). Furthermore, the RMSE for ANN is 0.041(m), 

whereas the PINNs model demonstrates a more favorable 

RMSE of 0.028(m). Based on the aforementioned analysis, 

the examination not only confirms the superior performance 

of the PINNs model over the ANN model but also sheds light 

on the underlying strengths of the PINNs approach. This 

prompts the question of the source of these advantages, given 

that both models share identical hyperparameters. The key 

lies in the additional information incorporated by the PINNs 

model, derived from collection points within the compu-

tational domain. This enriched dataset allows the PINNs 

model to optimize the solution of the SWE by effectively 

minimizing the loss function while considering the physical 

constraints imposed by the governing equations. By inte-

grating the governing equations or physical principles as 

additional constraints, PINNs can effectively guide the lear-

ning process toward solutions that adhere to underlying 

physics (Karniadakis et al., 2021; Peng et al., 2021; Raissi 

Fig. 6. Presentation of training data with (a) for ANN, while (b) shows the collection points for training PINNs. The green, red, and black points 

are data of the initial condition, boundary condition, and collection points, respectively

Table 1. Comparison between ANN and PINNs in terms of L2-norm and RMSE

Models 






 L2-norm (m) RMSE (m)

ANN 5 10 - 5.360e-2 0.041

PINNs 5 10 500 3.638e-2 0.028
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et al., 2019). Various studies have consistently highlighted 

the limitations of ANN models in handling sparse data, leading 

to non-physical outcomes event when applied (Riley, 2019; 

Wang et al., 2020; Zobeiry and Humfeld, 2021). Furthermore, 

the reliance on a significant amount of labeled data during the 

training process further compounds the challenge, parti-

cularly in scientific machine-learning applications where 

such data ofter scarce (Gao et al., 2021; Sun and Wang, 2020). 

The finding of this experiment confirms the inherent adv-

antage of PINNs in effectively approximating solutions to 

PDEs, exemplified by their successful application to SWE 

where PINNs’ solutions adhere to the laws of physics. Addi-

tionally, the results underscore the superiority of PINNs 

when faced with scenarios involving sparse training data, 

further highlighting the robustness and capability in handling 

data limitations.

4.4 How does the spatial distribution of collection 

points influence the ultimate outcomes?

The final experiment in our study aims to address the 

question of how the results obtained from the PINNs model 

are influenced by different sampling methods for collection 

points within the computational domain. Two sampling 

methods are investigated in this experiment. The first method 

involves randomly drawing collection points, similar to 

Experiment 1, 2 and 3. In contrast, the second sampling method 

is specifically designed to target areas of high error in the 

calculation of domain. Based on observation from the results, 

it is evident that the errors of PINNs predominantly concen-

trate in the diagonal region of the computation domain. 

Consequently, collection points are deliberately selected 

around this high error region instead of employing random 

sampling. It is important to emphasize that the total number 

of input data points for the two PINNs in this experiment 

remains identical. The sole distinction lies in the distribution 

of the collection points.

Fig. 7(a) displays the spatial and temporal distribution of 

data points obtained through random sampling, whereas Fig. 

7(b) showcases the deliberate selection sampling approach. 

Both models utilize an equal total number of collection 

points, with Nc = 720. Furthermore, the boundary condition 

and initial condition data points are specified as NBC = 10 

and NIC = 5, respectively. Upon examining the outcomes of 

two PINNs models employing different sampling strategies, 

depicted in Figs. 7(c) and 7(d), the impact of the sampling 

strategy on the model results appears inconclusive. However, 

a notable distinction emerges when comparing the results 

obtained from PINNs with the analytical solution, as 

illustrated in Figs. 7(e) and 7(f). Evidently, when collection 

points are intentionally selected from the high-error region 

as input for PINNs, superior outcomes are achieved compared 

to randomly selected collection points.

The error indicators presented in Table 2 emphasize a more 

pronounced distinction between the two sampling strategies. 

In the case of the random selection strategy, the L2 error is 

reported as 2.748e-2(m) and the RMSE as 0.021(m). However, 

with the alternative sample selection strategy, the error 

indicators exhibit a significant reduction, with an L2 error of 

1.645e-2(m) and an RMSE of 0.013(m). Upon comparing the 

outcomes presented in Experiment 1 and Experiment 4 

concurrently, a discernible pattern emerges, underscoring 

the pivotal role of residual collection methods in augmenting 

the accuracy of the PINNs model. As shown by Fig. 8 regarding 

water level elevation at different times, it becomes evident 

that the utilization of a selective sampling approach yields 

results nearly indistinguishable from the analytical solution 

when employed in conjunction with the PINNs model.

The primary focus of PINNs lies in optimizing the PDE 

loss, ultimately guaranteeing the coherence between the 

trained network and the PDE under consideration (Karnia-

dakis et al., 2021; Raissi et al., 2019). The PDE loss is assessed 

at a diverse array of scattered residual points. Consequently, 

the precise location and distribution of these residual points 

assume paramount importance in optimizing the performance 

of PINNs (Mao et al., 2020; Wu et al., 2023). Previous studies 

primarily employed a random uniform or nonuniform selec-

tion process for collection points, overlooking the importance 

of deliberate sample selection (Lu et al., 2021; Raissi et al., 

2019; Tartakovsky et al., 2020). However, the results obtained 

in this study clearly indicate that the process of sample 

selection merits more careful consideration than simply 

randomly drawing residual points within the computational 

domain.
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4.5 Limitations and Future Work

While the employed method in this study has demonstrated 

its effectiveness, it is important to acknowledge its limi-

tations. The conducted experiments focused on relatively 

simple scenarios, calling for future research to expand the 

methodology to encompass more intricate and realistic 

situations, including complex topography and multiphase 

flow problems. Additionally, as the primary objective of this 

study was to assess the capability of PINNs in obtaining 

numerical solutions for SWE, the hyperparameters remained 

constant throughout the study. Thus, there is scope for 

refining the structure of PINNs, necessitating further investi-

gations into hyperparameter optimization strategies to 

identify the most optimal configuration.

5. Conclusions

In this research, we have thoroughly investigated the 

application of Physics-Informed Neural Networks (PINNs) 

Fig. 7. Spatial distribution of collection points utilizing (a) random and (b) selective sample technique,  the analytical solution of water depth (c 

and d), and the difference between analytical and PINNs methods corresponding to random and selective sample techniques (d and f)

Table 2. Comparison between the random sample and selected sample schemes

Schemes 






 L2-norm (m) RMSE (m)

Random 5 10 720 2.748e-2 0.021

Selected 5 10 720 1.645e-2 0.013
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in estimating the solution of the 1D shallow water equations, 

with a specific focus on modeling the physics phenomena of 

non-breaking wave propagation over a flatbed. Our proposed 

approach leverages both measured data and the governing 

physical laws, creating a powerful synergy between empirical 

observations and mathematical constraints. Through three 

meticulously designed experiments, we have assessed the 

capabilities of PINNs and have drawn several key conclu-

sions, which hold particular significance in the context of 

non-breaking wave phenomena:

1. PINNs have proven to be highly effective in providing 

numerical solutions for the 1D shallow water equations, 

accurately simulating the intricate dynamics of non- 

breaking wave propagation over a flatbed.

2. Unlike traditional Artificial Neural Networks (ANN), 

PINNs seamlessly integrate the governing physics know-

ledge into the training process, employing physics const-

raints within the loss functions. This unique characteristic 

allows us to represent the physical processes of wave 

behavior more faithfully.

3. PINNs have demonstrated clear advantages over tradi-

tional deep learning methods, particularly in situations 

with sparse data. This holds immense promise for appli-

cations where data may be limited, such as studying non- 

breaking wave phenomena in real-world scenarios. Never-

theless, further comprehensive investigation is required 

to ascertain the applicability of PINNs in scenarios 

characterized by abrupt and sudden alterations in flow 

dynamics.

4. Our experiments have unveiled that the distribution of 

collection points within the computational domain signi-

ficantly influences the accuracy of the final solution, a 

critical insight for accurately modeling the non-breaking 

wave behavior over flatbeds.

Overall, this work represents a significant step toward 

harnessing the power of PINNs to model and understand 

complex physical phenomena, particularly in the context of 

non-breaking wave dynamics, and it sets a potential tool for 

future applications of the PINNs in real-world scenarios.
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