• Title/Summary/Keyword: Output Ripple Current

Search Result 334, Processing Time 0.03 seconds

Analysis and Design of Coupled Inductors for Two-Phase Interleaved DC-DC Converters

  • Lee, Jong-Pil;Cha, Honnyong;Shin, Dongsul;Lee, Kyoung-Jun;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.339-348
    • /
    • 2013
  • Multiphase dc-dc converters are widely used in modern power electronics applications due to their advantages over single-phase converters. Such advantages include reduced current stress in both the switching devices and passive elements, reduced output current ripple, and so on. Although the output current ripple of a converter can be significantly reduced by virtue of the interleaving effect, the inductor current ripple cannot be reduced even with the interleaving PWM method. One way to solve this problem is to use a coupled inductor. However, care must be taken in designing the coupled inductor to maximize its performances. In this paper, a detailed analysis of a coupled inductor is conducted and the effect of a coupled inductor on current ripple reduction is investigated extensively. From this analysis, a UU core based coupled inductor structure is proposed to maximize the performance of the coupled inductor.

A High-Efficiency, Auto Mode-Hop, Variable-Voltage, Ripple Control Buck Converter

  • Rokhsat-Yazdi, Ehsan;Afzali-Kusha, Ali;Pedram, Massoud
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.115-124
    • /
    • 2010
  • In this paper, a simple yet efficient auto mode-hop ripple control structure for buck converters with light load operation enhancement is proposed. The converter, which operates under a wide range of input and output voltages, makes use of a state-dependent hysteretic comparator. Depending on the output current, the converter automatically changes the operating mode. This improves the efficiency and reduces the output voltage ripple for a wide range of output currents for given input and output voltages. The sensitivity of the output voltage to the circuit elements is less than 14%, which is seven times lower than that for conventional converters. To assess the efficiency of the proposed converter, it is designed and implemented with commercially available components. The converter provides an output voltage in the range of 0.9V to 31V for load currents of up to 3A when the input voltage is in the range of 5V to 32V. Analytical design expressions which model the operation of the converter are also presented. This circuit can be implemented easily in a single chip with an external inductor and capacitor for both fixed and variable output voltage applications.

Improved LCCT Z-Source DC-AC Inverter for Ripple Reduction of Input Current and Capacitor Voltage (입력전류와 커패시터 전압의 맥동저감을 위한 개선된 LCCT Z-소스 DC-AC 인버터)

  • Shin, Yeon-Soo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1432-1441
    • /
    • 2012
  • In this study, an improved LCCT(Inductor-Capacitor-Capacitor-Trans) Z-source inverter(Improved LCCT ZSI) with characteristics of Quasi Z-source inverter(QZSI) and LCCT Z-source inverter(LCCT ZSI) is proposed. The proposed inverter can also reduce the voltage stress and input current/capacitor voltage ripples compared with conventional LCCT ZSI and Quasi ZSI. A two winding trans in Z-impedance network of the conventional LCCT ZSI is replaced by a three winding trans in the proposed inverter. To verify the validity of the proposed inverter, a DSP controlled hardware was made and PSIM simulation was executed for each method. Comparing the current and voltage ripples of each method under the condition of input DC voltage 70[V] and output AC voltage 76[Vrms], the input current and capacitor voltage ripple factors of the proposed inverter were low as 11[%] and 1.4[%] respectively. And, for generation of the same output AC voltage of each method, voltage stress of the proposed inverter was low as 175[V] under the condition of duty ratio D=0.15. As mentioned above, we could know that the proposed inverter have the characteristics of low voltage stress, low ripple factor and low operation duty ratio compared with the conventional methods. Finally, the efficiency according to load change/duty ratio and the transient state characteristics were discussed.

2-Phase Bidirectional Non-Inverting Buck-Boost Converter using Coupled Inductor (결합 인덕터를 이용한 2상 양방향 비반전 벅-부스트 컨버터)

  • Chae, Jun-Young;Jeong, Seung-Yong;Cha, Hon-Nyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.481-487
    • /
    • 2014
  • This study proposes a two-phase non-inverting buck-boost converter that uses a coupled inductor. The multi-phase converter has many advantages over single-phase counterparts, such as reduced output current ripple and conduction loss in switching devices and passive elements. Although the output current ripple of the multi-phase converter is reduced significantly because of the interleaved effect, the inductor current ripple is not reduced in multi-phase converters. One of the solutions to this problem is to use a coupled inductor. A 4 kW prototype converter is built and tested to verify the performance of the proposed converter.

Design of current estimator for reducing of current ripple in BLDC motor (BLDC 전동기의 전류맥동 보상을 위한 전류추정기 설계)

  • Kim, Myung-Dong;Oh, Tae-Seok;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.339-341
    • /
    • 2006
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor current it is modeled by a neural network that is configured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which fast inputs and outputs are used to calculate the current output. Using the model, effective estimator to compensate the effects of disturbance has been designed. The effectiveness of the proposed current estimator is verified through experiments.

  • PDF

A Study on Current Ripple Reduction Due to Offset Error and Dead-time Effect of Single-phase Grid-connected Inverters Based on PR Controller (비례공진 제어기를 이용한 단상 계통연계형 인버터의 데드타임 영향과 옵셋 오차로 인한 전류맥동 저감에 관한 연구)

  • Seong, Ui-Seok;Hwang, Seon-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.201-208
    • /
    • 2015
  • The effects of dead-time and offset error, which cause output current distortion in single-phase grid-connected inverters are investigated this paper. Offset error is typically generated by measuring phase current, including the voltage unbalance of analog devices and non-ideal characteristics in current measurement paths. Dead-time inevitably occurs during generation of the gate signal for controlling power semiconductor switches. Hence, the performance of the grid-connected inverter is significantly degraded because of the current ripples. The current and voltage, including ripple components on the synchronous reference frame and stationary reference frame, are analyzed in detail. An algorithm, which has the proportional resonant controller, is also proposed to reduce current ripple components in the synchronous PI current regulator. As a result, computational complexity of the proposed algorithm is greatly simplified, and the magnitude of the current ripples is significantly decreased. The simulation and experimental results are presented to verify the usefulness of the proposed current ripple reduction algorithm.

Compensation of Effects of DC-Link Ripple Voltages on Output Voltage of Two-leg Three-Phase PWM Inverters (2-leg 3상 PWM 인버터의 출력전압에서 직류링크 리플 전압의 영향 보상)

  • Kim, Young-Sin;Lee, Dong-Choon;Seok, Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.572-574
    • /
    • 2005
  • In this paper, a compensation scheme for the effect of dc-link ripple voltages on output voltage of two-leg and three-phase PWM inverters is proposed, without which compensation scheme the three-phase output voltage and current are much distorted. The proposed scheme has been verified by experimental results.

  • PDF

Design and Control of Interleaved Boost converter for Multi-string PV Inverter (멀티스트링 태양광 인버터용 인터리브드 부스트 컨버터의 설계 및 제어)

  • Kang, Young-Ju;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.538-543
    • /
    • 2011
  • In this paper, design and control of an interleaved boost converter for multi-string PV Inverter are discussed. Interleaved Boost converter can reduce current ripples at input and output side by cancelling an each phase of inductor currents. Therefore, it contributes to increase efficiency and downsize the whole system volume, cost. One of the advantages of the multi-string system is easy to expand power capacity by connecting the converter modules in parallel. In order to reduce current ripples, the inductor currents on each phase are controlled independently in the converter module, and communication between the converter modules is required for further ripple current reduction. Current control algorithm for the balance of the each phase ripple currents and synchronization of the converter modules based on communication are proposed and implemented in the DSP programming. 10kW prototype of the multi-string converter module is assembled and experimental results are presented to verify the proposed ripple current reduction methods.

A 360Hz DC Ripple-Voltage Suppression Scheme in Three-Phase Soft-Switched Buck Converter (360Hz DC 리플-전압 감소기법을 사용한 3-Phase Soft-Switched Buck Converter)

  • Choi, Ju-Yeop;Ko, Jong-Jin;Song, Joong-Ho;Choy, Ick;Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.813-820
    • /
    • 2000
  • A technique to suppress the low frequency ripple voltage of the DC output in three phase buck diode converter is presented in this paper. The proposed pulse frequency modulation methods and duty ratio modulation methods are employed to regulate the output voltage of the buck diode converter and guarantee zero-current-switching(ZCS) of the switch over the wide load range. The proposed control methods used in this paper provide generally good performance such as low THD of the input line current and unity power factor. In addition, control methods can be effectively used to suppress the low frequency ripple voltage appeared in the dc output voltage. The harmonic injection technique illustrates its validity and effectiveness through the simulations and experiments.

  • PDF

Reduction of Current Harmonic Occurred form between Uninterruptible Powers Supply and Rectifier Load (정류기 부하와 무정전전원장치 사이에 발생되는 Current Harmonic 저감)

  • 곽철훈;반한식;최규하;목형수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.41-44
    • /
    • 1999
  • The main purpose of the UPS is to supply independent and stable power to connected equipment. In installing and operating the UPS system, songle module, three phase UPS in more benefit than multi module, songle phase UPS in the point of volume and cost. However, when supplying Rectifier with output power form three phase UPS, by connecting auto-transformer, occurred harmonic and ripple current makes output filter damaged and leads to nonlinear current coasted by unbalance load. Therefor, in this paper the aim of concentring compound-wound transformer and harmonic filter is supplying liner current by reducing harmonic and ripple current and improving unbalance in voltage and distortion in current wave.

  • PDF