• Title/Summary/Keyword: Output Factor

Search Result 1,568, Processing Time 0.029 seconds

PWM Controlled Cycloconverter (PWM 제어형 Cycloconverter)

  • Lee, Jong-Moo;Koo, Heun-Hoi;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.518-521
    • /
    • 1989
  • Recently, PWM cycloconverters that are frequency conversion system have been studied for eliminating do links of conventional converter and inverter systems. A new real-time method for generating PWM patterns is proposed in this paper. This method realizes sinusoidal input and output currents, controllable input displacement factor regardless of load power factor, and maximum output voltage range. Finally, feasibility of the proposed method is confirmed by simulation and experiments.

  • PDF

Scaling Factor Tuning Method for Fuzzy Control System (퍼지제어 시스템을 위한 이득동조 방법)

  • 최한수;김성중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.819-826
    • /
    • 1994
  • This paper deals with a self-tuning fuzzy controller. The fuzzy controller is constructed with linguistic rules which consist of the fuzzy sets. Each fuzzy set is characterized by a membership function. The tuning fuzzy controller has paramenters that are input/output scaling factors to effect control output. In this paper we propose a tuning method for the scaling factor Computer simulations carried out on first-order and second-order processes will show how the present tuning approach improves the transient and the steady-state characteristics of the overall system.The applicability of the proposed algorithm is certified by computer simulation results.

A Novel Dead Time Minimization Algorithm for improving the inverter output waveforms (인버터 출력파형 개선을 위한 새로운 휴지기간 최소화 알고리즘)

  • Han, Yun-Seok;Choe, Jeong-Su;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.269-277
    • /
    • 1999
  • In this paper, a novel dead time minimization algorithm is proposed for improving the output waveform of an inverter. The adverse effects of the dead time are mainly described by the voltage drop and the distortion factor of waveforms. The principle of the proposed algorithm is organized with forbidding unnecessary firings fo the inverter switches which are not conducted even though the gate signal is impressed. The proposed methods are explained with the conduction mode of output currents. The H/W and S/W implementation method of the proposed algorithm are also presented. The validity of the proposed algorithm is verified by comparing the simulation and experimental results with conventional methods. It can be concluded from the results that the proposed algorithm has the advantage which is able to reduce the harmonics in the output voltages and which the output voltage can nearly be equal to the reference value. Another advantage of the proposed method is the reduction of total numbers of switching so that the switching losses of inverter drives can be minimized.

  • PDF

Multi-output VC-TCXO for WCDMA(UMTS) (WCDMA(UMTS)용 다중출력 VC-TCXO)

  • Jeong, Chan-Yong;Lee, Hai-Young
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.841-844
    • /
    • 2005
  • Multi-output VC-TCXO (Voltage Controlled-Temperature Compensated Crystal Oscillator) for WCDMA has integrated the additional CMOS inverter, so it can be normal clipped sinewave output and additional CMOS output and it can be satisfied the VC-TCXO Characteristics that WCDMA system required. In this paper, however 26MHz is used for reference frequency, similarly and practically, it is usable from 10MHz to 40MHz, Most important factor to integrate CMOS inverter internally is the isolation between normal output and additional output. For this, it is separated in package design, due to this, when it isn't used additional output, it shows the same electrical performance, when it is used additional output, it has minimum-rized the interference. and then the important characteristics in reference oscillator are met to WCDMA system's requirements, like phase noise and frequency short term stability.

  • PDF

A Study on the Single Phase Voltage-Controlled Active Power Filter for Power Quality Improvement (전력품질 개선을 위한 단상 전압제어형 능동전력필터 시스템에 관한 연구)

  • 손진근
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.238-245
    • /
    • 2003
  • In this paper, a single Phase voltage source voltage-controlled active power filter(APF) for power quality improvement was proposed. The proposed APF has the performance of harmonic suppression and unity power factor correction. The performance of harmonic suppression can be obtained by controlling the waveshape of the APF output voltage to be sine wave. And, unity power factor is controlled by the reactive power control loop of the APF output. Simulation and experimental results using diode rectifier showed that the voltage-controlled APF, unlike the current-controlled APF, can reduce the voltage harmonics as well as current harmonics. Also the results showed that the input dover factor and power quality were greatly improved.

Soft Switching High Power Factor Buck Converter (Soft Switching방식 고역률 강압형 컨버터)

  • 구헌회;조기연
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.243-246
    • /
    • 1997
  • In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, a input capacitor can be small enough to filter input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn of of the switching device is a zero current switching(ZCS) and high power factor input is obtained. In addition, zero voltage switching(ZVS) at turn of is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontious conduction mode operation.

  • PDF

Characteristic of efficiency and powerfactor according to condition by polearcs and switching an91e for switched reluctance motor considering driving circuits (구동회로를 고려한 스위치드 릴럭턴스 전동기의 극호와 스위칭 조건에 따른 역율과 효율 특성)

  • Park, Jong-Won;Kim, Youn-Hyun;Choi, Jae-Hak;Lee, Ju;Kim, Suk-Tae;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.702-704
    • /
    • 2001
  • This paper investigates efficiency and power factor of Switched Reluctance Motor (SRM) using Finite Element Method considered driving circuit. The efficiency and power factor are calculated in Input terminal and Output terminal respectively. When calculating power factor, apparent power is obtained by effective voltage and current because SRM is operated by switching of driving circuit. Efficiency is calculated by mechanical output and active power. Finally, the characteristics of efficiency and power factor in three proposed models are compared due to the switching pattern.

  • PDF

The Analysis of The Three Phase Rectifier (다중 3상 PWM 정류기의 해석)

  • Shin, D.H.;Youn, K.S.;Cho, J.G.;Kwon, W.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.242-245
    • /
    • 1995
  • In this paper the multiple three rectifiers for the power factor correction are proposed, analyzed and designed. The multiple three phase rectifiers draw sinusoidal ac currents from the ac voltage sources with nearly unity input power factor and operate with PWM making the control circuit simple and system cost low. Outstandingly it reduces the rated power capacity of devices and the input filter size by reducing input current ripples. Moreover design rules can be obtained from input and output current equations. With the proposed rules, input power factor and output power capacity are determined approximately. Finally these design rules are verified with computer simulations.

  • PDF

A Sliding Mode Control Design based on the Reaching Law for Matrix Rectifiers

  • Wang, Zhiping;Mao, Yunshou;Hu, Zhanhu;Xie, Yunxiang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1122-1130
    • /
    • 2016
  • This paper presents a novel approach for achieving both a tight DC voltage regulation and a power factor control by applying the Reaching Law Sliding Mode Control (RL-SMC) and the conventional Sliding Mode Control (SMC). Applying these strategies on a matrix rectifier (MR) can achieve a unity grid side power factor when the DC load changes widely and it can provide a ripple-free output voltage that is easily affected by distortions of the three-phase ac voltage supply. Furthermore, by employing the reaching law on the SMC can solve the chatting problem of the sliding motion. Comparative Matlab simulations and experimental verifications for these strategies have been presented and discussed in this paper. The results show that by applying the SMC and RL-SMC on a MR can achieve a unity grid side power factor and a regulated ripple-free DC output.

Inverter Air-conditioner Power System with Low Power Dissipation Type using Micro-controller

  • Mun, Sang-Pil;Shu, Ki-Young;Kim, Ju-Yong;Kim, Kwang-Tae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.492-496
    • /
    • 2004
  • When using a conventional power factor correction circuit, a comparatively huge capacitor is used to boost-up output voltage. It has a large amount of harmonic distortion in the input current waveform. To improve the input current waveform of diode rectifiers, we propose a new operating principle for the power factor correction circuit. Due to the fact that the proposed circuit uses smaller ones and a smaller reactor, the output voltage increases and obtains higher input current waveforms. These are suitable for the harmonics guidelines. The proposed circuit is able to obtain higher power factor and efficiency. Also, it has reduced switching loss and held over-shooting by using an inverter of eliminated dead-time HPWM that has non-linear impedance circuits to make up diodes, capacitance and a reactor. We compared the conventional PWM inverter and proposed HPWM inverters and found that a high input power factor of 97[%] and an efficiency of 98[%] were also obtained.

  • PDF