• Title/Summary/Keyword: Output Desired values

Search Result 56, Processing Time 0.031 seconds

The Development of a Programmable Single-Phase AC Power Source with a Linear Power Amplifier

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Yoo, Jae-Geun;Son, Jae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.39-46
    • /
    • 2007
  • This paper presents a programmable single-phase ac power source that provides a sinusoidal output voltage with an adjustable output amplitude and frequency over a wide range as well as an arbitrary waveform. The ac power source under consideration have a linear power amplifier. The desired output values can be programmed with a personal computer. The power source operates at 220[V]/60[Hz] mains and the output voltage is isolated from the input circuit. The system consists mainly of a power converter to generate and amplify the waveform signal, a controller to control the desired output signal and measure the output parameters, and a control program to set the desired output and display the values. The prototype ac power source was constructed and tested with the results demonstrating a good performance.

The Parameter Optimization of Current Amplifier with GA (GA를 이용한 전류 앰프의 파라미터 최적화)

  • Yang, J.H.;Jeong, H.H.;Kim, Y.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.147-152
    • /
    • 2006
  • The current type amplifier is the device that is used for an actuator as the motor's torque controller. However, it is too difficult to select the parameter value that has the desired output because the current type amplifier's transfer function is too complex. This study concern about the design of the current type amplifier with the desired output. From the modeled transfer function of the current type amplifier, the optimal parameter values of the transfer function can be selected in order to have the desired output using the Real Coded Genetic Algorithm(RCGA). The real circuit is made with the selected parameter value. The step response of the real circuit is in good agreement with the desired step response.

  • PDF

The Design and Implementation of a 5 kW Programmable Three-Phase Harmonic Generator

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Choi, Myoung-Il;Park, Chee-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.162-166
    • /
    • 2008
  • This paper presents the design and implementation of a 5kW programmable three-phase harmonic generator, which is capable of generating sinusoidal output voltages with adjustable output amplitude and frequency over a wide range as well as arbitrary waveforms. The considered harmonic generator is a linear power amplifier type. This system consists mainly of a power converter to generate and amplify waveform signals, a controller to control the desired output signal and measure the output parameters including voltage and current, and a control program to set the desired output and display the output values. The prototype programmable three-phase harmonic generator has been constructed and tested. Test results show that the developed programmable three-phase harmonic generator performs well.

The Preload-Responsive Regulation of Cardiac Output in Total Artificial Heart Using Dual Adaptive Controller (2중 적응제어방식에 의한 전치환 인공심장의 전부하에 민감한 심박출량 조절)

  • Lee, Sang-Hoon;Kim, In-Young;Ahn, Hyuk;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 1993
  • This paper proposes an adaptive technique for the cardiac output regulation of a pendulum type electromechanical TAH. This techinque, which consists of two RLSE's and two PASTC' 5, performs Its controllability over the TAIB so that the m(RAP) and m(LAP) values re- main close to their desired values under she assumption that the variation of m(RAP) and m (LAP) are dominated by the variation of C.0. and the difference between the left and right ventricular output, respectively. To evaluate the performance of the proposed control system, a simulation is performed by using a human model which contains physiologic, drug and treatment, artificial heart and noise models. As a result, dual adaptive controller showed that abnormal m(LAP) and m(RAP) could be recovered to the normal range within 10minute and maintained desired value in steady state. The operation of this controller prored to be robust in spite of the rapid variation of human status.

  • PDF

A Design of Output Voltage Compensation Circuits for Bipolar Integrated Pressure Sensor (바이폴라 공정을 이용한 압력센서용 출력전압 보상회로의 설계)

  • Lee, Bo-Na;Kim, Kun-Nyun;Park, Hyo-Derk
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.300-305
    • /
    • 1998
  • In this paper, integrated pressure sensor with calibration of offset voltage and full scale output and temperature compensation of offset voltage and full scale output were designed. The signal conditioning circuitry are designed that calibrate the offset voltage and full scale output to desired values and minimize the temperature drift of offset voltage and full scale output. Designed circuits are simulated using SPICE in a bipolar technology. The ion implanted resistor of different temperature coefficient were used to trimming the desired values. As a results, offset voltage was calibrated to 0.133V and the temperature drift of offset voltage was reduced to $42\;ppm/^{\circ}C$. Also, the full scale output was calibrated to 4.65V and the temperature coefficient of full scale output was reduced to $40ppm/^{\circ}C$ after temperature compensation.

  • PDF

Sensorless Passivity Based Control of a DC Motor via a Solar Powered Sepic Converter-Full Bridge Combination

  • Linares-Flores, Jesus;Sira-Ramirez, Hebertt;Cuevas-Lopez, Edel F.;Contreras-Ordaz, Marco A.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.743-750
    • /
    • 2011
  • This article deals with the sensor-less control of a DC Motor via a SEPIC Converter-Full Bridge combination powered through solar panels. We simultaneously regulate, both, the output voltage of the SEPIC-converter to a value larger than the solar panel output voltage, and the shaft angular velocity, in any of the turning senses, so that it tracks a pre-specified constant reference. The main result of our proposed control scheme is an efficient linear controller obtained via Lyapunov. This controller is based on measurements of the converter currents and voltages, and the DC motor armature current. The control law is derived using an exact stabilization error dynamics model, from which a static linear passive feedback control law is derived. All values of the constant references are parameterized in terms of the equilibrium point of the multivariable system: the SEPIC converter desired output voltage, the solar panel output voltage at its Maximun Power Point (MPP), and the DC motor desired constant angular velocity. The switched control realization of the designed average continuous feedback control law is accomplished by means of a, discrete-valued, Pulse Width Modulation (PWM). Experimental results are presented demonstrating the viability of our proposal.

State-Space Pole-Placing self-Tuning Controller Using Input-Output Values (입출력값에 의한 상태공간 극배치 자기동조제어기)

  • Kim, Yeong-Gil;Park, Min-Yong;Lee, Sang-Bae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.17-23
    • /
    • 1985
  • This paper describes a method for the design of a self-tuning controller of single-input/single-output systems with system noises and obsrrvation noises. The method uses state-space techniques to assign the closed-loop system poles to desired locations, but the control law is made up of process input and output measurement values, so that state estimation is unnecessary. Also the difficulties of tracking of reference inputs in state.space pole-placing control are tackled by including the reference input in the cost function proposed by Beger.

  • PDF

Control of Power Distribution for Multiple Receivers in SIMO Wireless Power Transfer System

  • Kim, Gunyoung;Boo, Seunghyun;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.221-230
    • /
    • 2018
  • A method to control the power distribution among receivers by the load values in a single-input, multiple-output (SIMO) wireless power transfer (WPT) system is investigated. We first derive the value of loads to maximize total efficiency. Next, a simple, but effective analytical formula of the load condition for the desired power distribution ratio is presented. The derived load solutions are simply given by system figure of merits and desired power ratios. The formula is validated with many numerical examples via electromagnetic simulations. We demonstrate that with the choice of loads from this simple formula, the power can be conveniently and accurately distributed among receivers for most practical requirements in SIMO WPT systems.

A Controlled Neural Networks of Nonlinear Modeling with Adaptive Construction in Various Conditions (다변 환경 적응형 비선형 모델링 제어 신경망)

  • Kim, Jong-Man;Sin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1234-1238
    • /
    • 2004
  • A Controlled neural networks are proposed in order to measure nonlinear environments in adaptive and in realtime. The structure of it is similar to recurrent neural networks: a delayed output as the input and a delayed error between tile output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by backpropagation and each weights are updated by RLS(Recursive Least Square). Consequently, this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. This new neural networks is Error Estimated Neural Networks. We can estimate nonlinear models in realtime by the proposed networks and control nonlinear models. To show the performance of this one, we have various experiments. And this controller call prove effectively to be control in the environments of various systems.

  • PDF

Spring Connected Size-Variable Rigid Block Model for Automatic Synthesis of a Planar Linkage Mechanism (평면 링크기구 자동 설계를 위한 스프링 연결 사이즈 가변 블록 모델)

  • Kim, Bum-Suk;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.822-826
    • /
    • 2008
  • A linkage mechanism is a device to convert an input motion into a desired output motion. Traditional linkage mechanism designs are based on trial and error approaches so that size or shape changes of an original mechanism often result in improper results. In order to resolve these problems, an improved automatic mechanism synthesis method that determines the linkage type and dimensions by using an optimization method during the synthesis process has been proposed. For the synthesis, a planar linkage is modeled as a set of rigid blocks connected by zero-length translational springs with variable stiffness. In this study, the sizes of rigid blocks were also treated as design variables for more general linkage synthesis. The values of spring stiffness and the size of rigid block yielding a desired output motion at the end-effecter are found by using an optimization method.

  • PDF