• Title/Summary/Keyword: Outlier Detection

Search Result 235, Processing Time 0.031 seconds

Identification of Incorrect Data Labels Using Conditional Outlier Detection

  • Hong, Charmgil
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.915-926
    • /
    • 2020
  • Outlier detection methods help one to identify unusual instances in data that may correspond to erroneous, exceptional, or surprising events or behaviors. This work studies conditional outlier detection, a special instance of the outlier detection problem, in the context of incorrect data label identification. Unlike conventional (unconditional) outlier detection methods that seek abnormalities across all data attributes, conditional outlier detection assumes data are given in pairs of input (condition) and output (response or label). Accordingly, the goal of conditional outlier detection is to identify incorrect or unusual output assignments considering their input as condition. As a solution to conditional outlier detection, this paper proposes the ratio-based outlier scoring (ROS) approach and its variant. The propose solutions work by adopting conventional outlier scores and are able to apply them to identify conditional outliers in data. Experiments on synthetic and real-world image datasets are conducted to demonstrate the benefits and advantages of the proposed approaches.

Temporal and spatial outlier detection in wireless sensor networks

  • Nguyen, Hoc Thai;Thai, Nguyen Huu
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.437-451
    • /
    • 2019
  • Outlier detection techniques play an important role in enhancing the reliability of data communication in wireless sensor networks (WSNs). Considering the importance of outlier detection in WSNs, many outlier detection techniques have been proposed. Unfortunately, most of these techniques still have some potential limitations, that is, (a) high rate of false positives, (b) high time complexity, and (c) failure to detect outliers online. Moreover, these approaches mainly focus on either temporal outliers or spatial outliers. Therefore, this paper aims to introduce novel algorithms that successfully detect both temporal outliers and spatial outliers. Our contributions are twofold: (i) modifying the Hampel Identifier (HI) algorithm to achieve high accuracy identification rate in temporal outlier detection, (ii) combining the Gaussian process (GP) model and graph-based outlier detection technique to improve the performance of the algorithm in spatial outlier detection. The results demonstrate that our techniques outperform the state-of-the-art methods in terms of accuracy and work well with various data types.

Density-based Outlier Detection for Very Large Data (대용량 자료 분석을 위한 밀도기반 이상치 탐지)

  • Kim, Seung;Cho, Nam-Wook;Kang, Suk-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.2
    • /
    • pp.71-88
    • /
    • 2010
  • A density-based outlier detection such as an LOF (Local Outlier Factor) tries to find an outlying observation by using density of its surrounding space. In spite of several advantages of a density-based outlier detection method, the computational complexity of outlier detection has been one of major barriers in its application. In this paper, we present an LOF algorithm that can reduce computation time of a density based outlier detection algorithm. A kd-tree indexing and approximated k-nearest neighbor search algorithm (ANN) are adopted in the proposed method. A set of experiments was conducted to examine performance of the proposed algorithm. The results show that the proposed method can effectively detect local outliers in reduced computation time.

TIME-VARIANT OUTLIER DETECTION METHOD ON GEOSENSOR NETWORKS

  • Kim, Dong-Phil;I, Gyeong-Min;Lee, Dong-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.410-413
    • /
    • 2008
  • Existing Outlier detections have been widely studied in geosensor networks. Recently, machine learning and data mining have been applied the outlier detection method to build a model that distinguishes outliers based on anchored criterion. However, it is difficult for the existing methods to detect outliers against incoming time-variant data, because outlier detection needs to monitor incoming data and classify irregular attacks. Therefore, in order to solve the problem, we propose a time-variant outlier detection using 2-dimensional grid method based on unanchored criterion. In the paper, outliers using geosensor data was performed to classify efficiently. The proposed method can be utilized applications such as network intrusion detection, stock market analysis, and error data detection in bank account.

  • PDF

A Distance-based Outlier Detection Method using Landmarks in High Dimensional Data (고차원 데이터에서 랜드마크를 이용한 거리 기반 이상치 탐지 방법)

  • Park, Cheong Hee
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.9
    • /
    • pp.1242-1250
    • /
    • 2021
  • Detection of outliers deviating normal data distribution in high dimensional data is an important technique in many application areas. In this paper, a distance-based outlier detection method using landmarks in high dimensional data is proposed. Given normal training data, the k-means clustering method is applied for the training data in order to extract the centers of the clusters as landmarks which represent normal data distribution. For a test data sample, the distance to the nearest landmark gives the outlier score. In the experiments using high dimensional data such as images and documents, it was shown that the proposed method based on the landmarks of one-tenth of training data can give the comparable outlier detection performance while reducing the time complexity greatly in the testing stage.

First Order Difference-Based Error Variance Estimator in Nonparametric Regression with a Single Outlier

  • Park, Chun-Gun
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.333-344
    • /
    • 2012
  • We consider some statistical properties of the first order difference-based error variance estimator in nonparametric regression models with a single outlier. So far under an outlier(s) such difference-based estimators has been rarely discussed. We propose the first order difference-based estimator using the leave-one-out method to detect a single outlier and simulate the outlier detection in a nonparametric regression model with the single outlier. Moreover, the outlier detection works well. The results are promising even in nonparametric regression models with many outliers using some difference based estimators.

A Binary Prediction Method for Outlier Detection using One-class SVM and Spectral Clustering in High Dimensional Data (고차원 데이터에서 One-class SVM과 Spectral Clustering을 이용한 이진 예측 이상치 탐지 방법)

  • Park, Cheong Hee
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.886-893
    • /
    • 2022
  • Outlier detection refers to the task of detecting data that deviate significantly from the normal data distribution. Most outlier detection methods compute an outlier score which indicates the degree to which a data sample deviates from normal. However, setting a threshold for an outlier score to determine if a data sample is outlier or normal is not trivial. In this paper, we propose a binary prediction method for outlier detection based on spectral clustering and one-class SVM ensemble. Given training data consisting of normal data samples, a clustering method is performed to find clusters in the training data, and the ensemble of one-class SVM models trained on each cluster finds the boundaries of the normal data. We show how to obtain a threshold for transforming outlier scores computed from the ensemble of one-class SVM models into binary predictive values. Experimental results with high dimensional text data show that the proposed method can be effectively applied to high dimensional data, especially when the normal training data consists of different shapes and densities of clusters.

Density-based Outlier Detection in Multi-dimensional Datasets

  • Wang, Xite;Cao, Zhixin;Zhan, Rongjuan;Bai, Mei;Ma, Qian;Li, Guanyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3815-3835
    • /
    • 2022
  • Density-based outlier detection is one of the hot issues in data mining. A point is determined as outlier on basis of the density of points near them. The existing density-based detection algorithms have high time complexity, in order to reduce the time complexity, a new outlier detection algorithm DODMD (Density-based Outlier Detection in Multidimensional Datasets) is proposed. Firstly, on the basis of ZH-tree, the concept of micro-cluster is introduced. Each leaf node is regarded as a micro-cluster, and the micro-cluster is calculated to achieve the purpose of batch filtering. In order to obtain n sets of approximate outliers quickly, a greedy method is used to calculate the boundary of LOF and mark the minimum value as LOFmin. Secondly, the outliers can filtered out by LOFmin, the real outliers are calculated, and then the result set is updated to make the boundary closer. Finally, the accuracy and efficiency of DODMD algorithm are verified on real dataset and synthetic dataset respectively.

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.

A Novel Battery State of Health Estimation Method Based on Outlier Detection Algorithm

  • Piao, Chang-hao;Hu, Zi-hao;Su, Ling;Zhao, Jian-fei
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1802-1811
    • /
    • 2016
  • A novel battery SOH estimation algorithm based on outlier detection has been presented. The Battery state of health (SOH) is one of the most important parameters that describes the usability state of the power battery system. Firstly, a battery system model with lifetime fading characteristic was established, and the battery characteristic parameters were acquired from the lifetime fading process. Then, the outlier detection method based on angular distribution was used to identify the outliers among the battery behaviors. Lastly, the functional relationship between battery SOH and the outlier distribution was obtained by polynomial fitting method. The experimental results show that the algorithm can identify the outliers accurately, and the absolute error between the SOH estimation value and true value is less than 3%.