• Title/Summary/Keyword: Outlet valve

Search Result 199, Processing Time 0.036 seconds

Effect of Inlet and Outlet Position on the Pumping Characteristics of a Diffuser/Nozzle Based Piezoelectric Micropumps (디퓨저/노즐을 이용한 압전형 마이크로 펌프의 펌핑 특성에 미치는 입출구 위치의 영향)

  • Jang, Hun-Hee;Kim, Chang-Nyung;Jung, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.411-417
    • /
    • 2007
  • This study has been conducted to investigate pumping characteristics of diffuser/nozzle based piezoelectric micropumps. The micropumps include a piezo disk (an actuator), a chamber and a set of diffuser and nozzle. Flow in the current micropumps is controlled by a set of diffuser and nozzle, not by a nap valve. The diffuser/nozzle based micropumps are more reliable in operation and are easier in manufacturing than the flap valve based micropumps. The flow rates of the piezoelectric micropumps have been closely analyzed with a numerical calculation. It has been found that the positions of the inlet and outlet of the micropump can influence the performance of the diffuser/nozzle based piezoelectric micropumps. This study may provide fundamental understanding for the design and analysis of the piezoelectric micropumps.

Numerical Evaluation of Flow Nature at the Downstream of a Ball Valve Used for Gas Pipelines with Valve Opening Rates (개도율에 따른 가스파이프라인용 볼 밸브 후류유동의 수치평가)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.370-377
    • /
    • 2018
  • Ball valve has been widely used in the field of high-pressure gas pipeline as an important component because of its low flow resistance and good leakage performance. The present paper focuses on the flow nature at the downstream of the ball valve used for gas pipelines according to valve opening rates. Steady 3-D RANS equations, SC/Tetra, have been introduced to analyze the flow characteristics inside the ball valve. Numerical boundary conditions at the inlet and outlet of the valve system are imposed by mass flow-rate and pressure, respectively. Velocity distributions obtained by numerical simulation are compared with respect to the valve opening rates of 30, 50, and 70%. Cavity distributions, asymmetry flow velocity and the flow stabilization point at each opening rate are also compared. When the valve opening rates are 30 and 50%, the flow stabilization requires the sufficient length of 10D or more due to the influence of the recirculation flow at the downstream of the valve.

Dynamic Characteristics of an Unsteady Flow Through a Vortex Tube

  • Kim, Chang-Soo;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2209-2217
    • /
    • 2006
  • Dynamic flow characteristics of a counter-flow vortex tube is investigated using hot-wire and piezoelectric transducer (PZT) measurements. The experimental study is conducted over a range of cold air outlet ratios (Y=0.3, 0.5, 0.7, and 1.0) and inlet pressure 0.15 MPa. Temperatures are measured at the cold air outlet and along the vortex tube wall. Hot-wire is located at cold outlet and PZT is installed at inner vortex tube by mounting at throttle valve. The cold outlet temperature results show that the swirl flow of vortex tube is not axisymmetric. The hot-wire and PZT results show that there exist two distinct kinds of frequency, low frequency periodic fluctuations and high frequency periodic fluctuations. It is found that the low frequency fluctuation is consistent with the Helmholtz frequency and the high frequency fluctuation is strongly related with precession oscillation.

DESIGN OF A CHECK VALVE FOR FEEDING BIOLOGICAL CELLS ONE BY ONE (세포의 개별 공급을 위한 체크 밸브의 설계)

  • Choi, Jung-Hoon;Lee, Sang-Wook;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.85-87
    • /
    • 1994
  • Feeding biological cells one by one is the key point in the manipulation of cells. The conventional valve systems have many difficulties in feeding cells one by one, because they shut the whole flow of fluids when they are closed and have possibilities of breaking the fragile cells. They need some other equipments for continuous supply of suspension and to protect the cells. We design a check valve for feeding biological cells one by one using polyimide all the silicon substrate. The cells are fed by hydraulic pressure through the isotropically etched cavity. When the suspension flows continuously along the channel the valve is bent by hydraulic pressure and a cell is fed to the outlet. We have studied a cell fusion device fabricated with polyimide and electroplating. If the designed check valve is located in front of the cell fusion device it is helpful to fuse two different kinds of cells.

  • PDF

Independent Metering Valve: A Review of Advances in Hydraulic Machinery

  • Nguyen, Thanh Ha;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.54-71
    • /
    • 2020
  • In light of the environmental challenges, energy-saving strategies are currently under investigation in the construction industry. This paper focuses on the energy-saving method used in the hydraulic system based on independent metering (IM) technologies, which can overcome the lost energy at the main control valve of the conventional electrohydraulic servo system. By scientifically arranging the proportional valves, the IM system can individually control the flow rate of the inlet and the outlet ports of the actuators. In addition, the IMV system can be used to effectively regenerate energy under different operating modes, thereby saving more energy than conventional hydraulic systems. Therefore, the IMV system has a great potential to improve the energy efficiency of hydraulic machinery. The overall IMV system, including the configuration, proportional valve, operation mode, and the control strategy is introduced via state-of-the-art hydraulic technologies. Finally, the challenges of IM systems are discussed to provide researchers with directions for future development.

Surgical Correction Of Double Outlet Right Ventricle (S.D.L.) (대혈관전위를 동반한 양대혈관 우심실기시증 치험 1례 (S.D.L.))

  • 조범구
    • Journal of Chest Surgery
    • /
    • v.12 no.3
    • /
    • pp.225-232
    • /
    • 1979
  • A 15-year-old girl underwent successful surgical correction of double-outlet right ventricle [S.D.L.] subaortic ventricular septal defect, patent foramen ovale, and pulmonary hypoplasia with valvular stenosis. The operation consisted of an internal baffling connecting the left ventricle to the aorta through the ventricular septal defect. The pulmonary stenosis was corrected with the method of connection the right ventricle to the pulmonary artery bifurcation using the Hancock valve[18mm] contained conduit. This rare type of DORV seemed to be suitable for corrective surgery, and the patient`s condition is very good until present time (post operative 7 months).

  • PDF

Performance analysis for load control of R744(carbon dioxide) transcritical refrigeration system using hot gas by-pass valve (핫가스 바이패스 밸브를 이용한 R744용 초임계 냉동사이클의 부하제어에 대한 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2189-2194
    • /
    • 2009
  • The automatic hot gas by-pass technique is applied to control the capacity of refrigeration and air-conditioning system when operating at part load. In the scheme, the hot gas from the compressor is extracted and injected into the outlet of an evaporator through a hot gas by-pass valve. Thus, In this paper, the hot gas by-pass scheme for CO2 is discussed and analyzed on the basis of mass and energy conservation law. A comparative study of the schemes is performed in terms of the coefficiency of performance (COP) and cooling capacity. The operating parameters considered in this study include compressor efficiency, superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : the superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

Performance Evaluation of High Pressure and High Pressure Drop Control Valve for Offshore Plants (해양플랜트용 고압·고차압 제어밸브의 성능 평가)

  • Kim, Kyuchul;Lee, Chiwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.767-773
    • /
    • 2013
  • A high-pressure, high-pressure drop control valve, which transforms the power transfer of a system by reducing the inlet pressure of 345bartothe outlet pressure of 112bar, is a fundamental component in an offshore plant process. With the increasingly growing market share of the maritime industry, this valve has been expected to be a high-value-added product. This study not only analyzes the relation between pressure drop and fluid velocity in a trim by using fluid analysis, but also examines the possibility of cavitation in a valve in addition to the plot for the extension of lifespan. Based on the analysis results, the design and production method of the valve are established, and accordingly, performance evaluation is carried out. It is demonstrated that the pressure drop from 345bar to 112bar is more feasible in the presence of the trim, which can induce a continuous and diminutive pressure drop in order to prevent cavitation in a high-pressure drop control valve. Furthermore, despite the fluid velocity near a seatring being found to be over 30m/s, the lifespan of the valve is determined to be adequate considering the operation condition of a prototype valve of 80%.

Analysis of Flow Characteristics of Multilayer Type Piezo Valve (적층형 압전밸브의 유동특성 해석)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.946-949
    • /
    • 2003
  • This paper reports on the fluid flow simulation results of a multilayer type piezoelectric valve. The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed type using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a MLCA(Multilayer Type Ceramic Actuator). It is confirmed that the complete laminar flow and the lowest flow leakage are strongly depend on the valve seat geometry. In addition, turbulent flow was occurs in valve outlet according to increase seat dimension, height and inlet pressure. From this, we was deducts the optimum geometry of the valve seat and diaphragm deflection that have an great influence fluid flow in valve. Thus, it is expected that our simulation results would be apply for piezoelectric applications such as valve and pump, fluidic control systems.

  • PDF

Analysis of Thermal Flow Characteristics according to the Opening Ratio of High-Pressure Valve for Hydrogen Storage Tank (수소 저장 탱크용 고압 밸브의 개도율에 따른 열·유동 특성 분석)

  • JUNG, DA WOON;CHOI, JIN;SUH, HYUN KYU
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.525-533
    • /
    • 2022
  • In this study, in order to numerically analyze the heat flow characteristics in the valve according to the opening rate for the solenoid valve for hydrogen supply applied to the hydrogen storage tank, flow characteristics were comparatively analyzed. Through the analysis of pressure and temperature distributions within the valve according to the high-pressure supply condition of 70 MPa or more, the heat flow characteristics in the valve, inlet and outlet passage according to the opening rate of the valve were identified. As a result a sudden change in the fluid behavior appears in the neck region of the valve, and it is understood that the flow separation caused by the flow path shape of the expanded tube has a dominant influence on the flow characteristics. And, it was confirmed that the shape of the valve seat is a factor significantly affecting the improvement of flow rate and differential pressure performance.