• Title/Summary/Keyword: Outer membrane protein A

Search Result 133, Processing Time 0.03 seconds

The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

  • Joo, Hee Kyoung;Lee, Yu Ran;Kang, Gun;Choi, Sunga;Kim, Cuk-Seong;Ryoo, Sungwoo;Park, Jin Bong;Jeon, Byeong Hwa
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1064-1070
    • /
    • 2015
  • Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10-100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO ($0.1-0.5{\mu}m$), a specific mitochondrial antioxidants, and cyclosporin A ($1-5{\mu}m$), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam ($1-50{\mu}m$), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells.

Study on Anti-Helicobacter pylori Antibody of Sparated Antigen from H. pylori (Helicobacter pylori로부터 유래된 항원의 anti-H, pylori 항체에 관한 연구)

  • Park, Chang-Ho;Bae, Man-Jong
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.241-248
    • /
    • 2008
  • This study has been carried out to secretion antibodies for the purpose of preventing the infection of Helicobacter pylori and using them as a supplement for treatment. This experiments have been separated antigens from H. pylori and observed into antibody production and the agglutination of H. pylori for the separated antigens. As major antigenic proteins separated from H. pylori, the following could be verified: 12 kinds of band for whole cell (WC), seven kinds of band for outer membrane protein (OMP), three kinds of band for crude urease, and one kind of band for lipopolysaccharide (LPS). The IgG anti-H. pylori antibody of separated antigens showed $77.9{\pm}6.4{\mu}g/ml$ for we (L), $84.9{\pm}6.4{\mu}g/ml$ for OMP, and $123.8{\pm}2.9{\mu}g/ml$ for crude urease, at the same antigen concentration of $20{\mu}g/100ull$, which showed the most at the crude urease. And it turned out that the IgA antibodies were generated with $2.5{\pm}0.32{\mu}g/ml$ for WC (L), $2.0{\pm}0.43{\mu}g/ml$ for OMP, and $1.3{\pm}0.25{\mu}g/ml$ for crude urease, which demonstrated the most for WC (L) antigens. As a result of verifying the immunogenecity of antigenic protein through the Western blotting, major antigenic substances could be confirmed as follows: 10 kinds for WC, six kinds for OMP and three kinds for crude urease. The agglutination values on the H. pylori of the antibody were $2^5,\;2^5,\;2^6\;and\;2^7$ at the antigen serums of anti-WC (H), anti-WC (L), anti-OMP and anti-crude urease, respectively, which indicated the highest for the antigen serum of anti-crude urease. The urease activation-inhibiting absorbance of antigen serum created by each antigen was $0.14{\pm}0.01$ for WC (H), $0.16{\pm}0.01$ for WC (L), $0.18{\pm}0.03$ for OMP, and $0.18{\pm}0.04$ for urease, demonstrating a significant inhibiting effect, compared with $0.26{\pm}0.02$ of the control group.

A Brucella Omp16 Conditional Deletion Strain Is Attenuated in BALB/c Mice

  • Zhi, Feijie;Fang, Jiaoyang;Zheng, Weifang;Li, Junmei;Zhang, Guangdong;Zhou, Dong;Jin, Yaping;Wang, Aihua
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.6-14
    • /
    • 2022
  • Brucella spp. are facultative intracellular pathogens that invade, survive and proliferate in numerous phagocytic and non-phagocytic cell types, thereby leading to human and animal brucellosis. Outer membrane proteins (Omps) are major immunogenic and protective antigens that are implicated in Brucella virulence. A strain deleted of the omp16 gene has not been obtained which suggests that the Omp16 protein is vital for Brucella survival. Nevertheless, we previously constructed an omp16 conditional deletion strain of Brucella, ∆Omp16. Here, the virulence and immune response elicted by this strain were assessed in a mouse model of infection. Splenomegaly was significantly reduced at two weeks post-infection in ∆Omp16-infected mice compared to infection with the parental strain. The bacterial load in the spleen also was significantly decreased at this post-infection time point in ∆Omp16-infected mice. Histopathological changes in the spleen were observed via hematoxylin-eosin staining and microscopic examination which showed that infection with the ∆Omp16 strain alleviated spleen histopathological alterations compared to mice infected with the parental strain. Moreover, the levels of humoral and cellular immunity were similar in both ∆Omp16-infected mice and parental strain-infected mice. The results overall show that the virulence of ∆Omp16 is attenuated markedly, but that the immune responses mediated by the deletion and parental strains in mice are indistinguishable. The data provide important insights that illuminate the pathogenic strategies adopted by Brucella.

Transcriptional Analysis of 10 Selected Genes in a Model of Penicillin G Induced Persistence of Chlamydophila psittaci in HeLa Cells

  • Hu, Yanqun;Chen, Lili;Wang, Chuan;Xie, Yafeng;Chen, Zhixi;Liu, Liangzhuan;Su, Zehong;Wu, Yimou
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1246-1256
    • /
    • 2015
  • Chlamydophila psittaci is an important intracellular pathogen. Persistent infection is an important state of the host-parasite interaction in this chlamydial infection, which plays a significant role in spreading the organism within animal populations and in causing chronic chlamydiosis and serious sequelae. In this study, a C. psittaci persistent infection cell model was induced by penicillin G, and real-time quantitative PCR was used to study the transcriptional levels of 10 C. psittaci genes (dnaA, dnaK, ftsW, ftsY, grpE, rpsD, incC, omcB, CPSIT_0846, and CPSIT_0042) in acute and penicillin-G-induced persistent infection cultures. Compared with the acute cultures, the penicillin-G-treated cultures showed a reduced chlamydial inclusion size and a significantly decreased number of elementary body particles. Additionally, some enlarged aberrant reticulate body particles were present in the penicillin-G-treated cultures but not the acute ones. The expression levels of genes encoding products for cell division (FtsW, FtsY) and outer membrane protein E encoding gene (CPSIT_0042) were downregulated (p < 0.05) from 6 h post-infection onward in the persistent infection cultures. Also from 6 h post-infection, the expression levels of DnaA, DnaK, IncC, RpsD, GrpE, and CPSIT_0846 were upregulated (p < 0.05); however, the expression level of OmcB in the persistent infection was< almost the same as that in the acute infection (p > 0.05). These results provide new insight regarding molecular activities that accompany persistence of C. psittaci, which may play important roles in the pathogenesis of C. psittaci infection.

Protective efficacy of attenuated Salmonella Typhimurium strain expressing BLS, Omp19, PrpA, or SOD of Brucella abortus in goats

  • Leya, Mwense;Kim, Won Kyong;Ochirkhuyag, Enkhsaikhan;Yu, Eun-Chae;Kim, Young-Jee;Yeo, Yoonhwan;Yang, Myeon-Sik;Han, Sang-Seop;Lee, John Hwa;Tark, Dongseob;Hur, Jin;Kim, Bumseok
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.15.1-15.13
    • /
    • 2021
  • Background: Attenuated Salmonella strain can be used as a vector to transport immunogens to the host antigen-binding sites. Objectives: The study aimed to determine the protective efficacy of attenuated Salmonella strain expressing highly conserved Brucella immunogens in goats. Methods: Goats were vaccinated with Salmonella vector expressing individually lipoprotein outer-membrane protein 19 (Omp19), Brucella lumazine synthase (BLS), proline racemase subunit A (PrpA), Cu/Zn superoxide dismutase (SOD) at 5 × 109 CFU/mL and challenge of all groups was done at 6 weeks after vaccination. Results: Among these vaccines inoculated at 5 × 109 CFU/mL in 1 mL, Omp19 or SOD showed significantly higher serum immunoglobulin G titers at (2, 4, and 6) weeks post-vaccination, compared to the vector control. Interferon-γ production in response to individual antigens was significantly higher in SOD, Omp19, PrpA, and BLS individual groups, compared to that in the vector control (all p < 0.05). Brucella colonization rate at 8 weeks post-challenge showed that most vaccine-treated groups exhibited significantly increased protection by demonstrating reduced numbers of Brucella in tissues collected from vaccinated groups. Real-time polymerase chain reaction revealed that Brucella antigen expression levels were reduced in the spleen, kidney, and parotid lymph node of vaccinated goats, compared to the non-vaccinated goats. Besides, treatment with vaccine expressing individual antigens ameliorated brucellosis-related histopathological lesions. Conclusions: These results delineated that BLS, Omp19, PrpA, and SOD proteins achieved a definite level of protection, indicating that Salmonella Typhimurium successfully delivered Brucella antigens, and that individual vaccines could differentially elicit an antigen-specific immune response.

Role of TolC in Vibrio vulnificus Virulence in Mice

  • Lin Mei-Wei;Lin Chen-Hsing;Tsai Shih-Feng;Hor Lien-I
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.59-62
    • /
    • 2002
  • The role of a TolC homologue in the virulence of Vibrio vulnificus, a marine bacterium causing serious wound infection and fulminant septicemia in persons with underlying conditions, has been studied. TolC, an outer membrane protein, has been implicated in a variety of bacterial functions including export of diverse molecules ranging from large proteins to antibiotics. A homologue of the tolC gene of V. cholerae, which has been shown to be required for bile resistance, cytotoxicity and colonization of this organism, was identified in the partially determined genome sequence of V. vulnificus. To determine the role of TolC in the virulence of V. vulnificus, a TolC-deficient (TD) mutant was isolated by in vivo allelic exchange. Compared with the parent strain, the TD mutant was more sensitive to bile, and much less virulent in mice challenged subcutaneously. This mutant was noncytotoxic to the HEp-2 cells, but its metalloprotease and cytolysin activities in the culture supernatant were comparable to the parent strain. In addition, the resistance of the TD mutant to human serum bactericidal activity as well as its growth in either human or murine blood was not affected. Collectively, our data suggest that TolC may be involved in colonization and/or spread of V. vulnificus to the blood stream, probably by secreting a cytotoxin other than the cytolysin.

  • PDF

Genomic Insights and Its Comparative Analysis with Yersinia enterocolitica Reveals the Potential Virulence Determinants and Further Pathogenicity for Foodborne Outbreaks

  • Gnanasekaran, Gopalsamy;Na, Eun Jung;Chung, Han Young;Kim, Suyeon;Kim, You-Tae;Kwak, Woori;Kim, Heebal;Ryu, Sangryeol;Choi, Sang Ho;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.262-270
    • /
    • 2017
  • Yersinia enterocolitica is a well-known foodborne pathogen causing gastrointestinal infections worldwide. The strain Y. enterocolitica FORC_002 was isolated from the gill of flatfish (plaice) and its genome was sequenced. The genomic DNA consists of 4,837,317 bp with a GC content of 47.1%, and is predicted to contain 4,221 open reading frames, 81 tRNA genes, and 26 rRNA genes. Interestingly, genomic analysis revealed pathogenesis and host immune evasion-associated genes encoding guanylate cyclase (Yst), invasin (Ail and Inv), outer membrane protein (Yops), autotransporter adhesin A (YadA), RTX-like toxins, and a type III secretion system. In particular, guanylate cyclase is a heat-stable enterotoxin causing Yersinia-associated diarrhea, and RTX-like toxins are responsible for attachment to integrin on the target cell for cytotoxic action. This genome can be used to identify virulence factors that can be applied for the development of novel biomarkers for the rapid detection of this pathogen in foods.

Development of a Specific antibody for the Detection of Ice Nucleation-Active Bacteria (빙핵세균의 검출을 위한 특이적 항혈청 개발)

  • Lee, Ung;Kwon, Mi-Kyung;Seong, Ki-Young;Cho, Baik-Ho;Kim, Ki-Chung
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Frost injury of crops is closely related to the epiphytic population dynamics of ice nucleation-active (INA) bacteria, and the injury can be reduced by decreasing the INA bacterial population. In order to predict the epiphytic population of INA bacteria on crops, a rapid and accurate detection method has to be developed. In the previous report, we produced some antibodies against INA proteins purified from the outer membrane of INA bacteria. However it was difficult to produce the antibodies because the purification procedures of the INA proteins were complicated, and the final yield was too low. We designed a specific peptide from the N-terminal region of INA protein by computer analysis and synthesized the peptide in vitro in this experiment. The peptide sequence was Asp-Ser-Por-Leu-Ser-Leu-His-Ala-Asp, that is corresponding to the highly conserved region in several INA proteins, with predicted beta turn, coiling, and hydrophilic region. A polyclonal anti-INA peptide antiserum produced specifically recognized INA bacteria as few as 10 colony-forming units (CFU) in the ELISA reactions and did not respond to other non-INA bacteria. Serological specificity of the anti-INA peptide antiserum will facilitate the forecasting of the INA bacterial population dynamics on crops.

  • PDF

Expression of Recombinant Intimin of Escherichia coli 0157:H7 and its Effect of Immune Response (장출혈성대장균 O157:H7 유래 재조한 Intimin의 발현과 그의 면역반응 효과)

  • Kim, D.G.;Lee, S.R.;Kim, J.W.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.495-502
    • /
    • 2004
  • Intimin, the product of eae gene in EHEC O157:H7, is required for intimate adherence. In this study, the C-terminaI region(281 amino acids) of the EHEC OI57:H7 intimin were expressed as a protein fusion with (His)$_6$ which was used to raise antiserum in rabbits. The antiserum reacted in western blot with a 94kDa outer membrane protein of EHEC O157:H7. It was observed that the antibody titers both in egg yolk and serum appeared in 2${\sim}$4 weeks after immunization with fusion protein. At the time of 8 weeks, the titre of egg yolk was found to be higher than that of sera. According to the results of neutralization test, chicken egg-yolk antibody(lgY) against the recombinant intimin strongly reacted to EHEC O157:H7. We conclude that a truncated recombinant intimin could be used as an immunogen to elicit antibody(lgY) against O157:H7.

Increased Immunogenicity and Protective Efficacy of a P. aeruginosa Vaccine in Mice Using an Alum and De-O-Acylated Lipooligosaccharide Adjuvant System

  • Ryu, Ji In;Wui, Seo Ri;Ko, Ara;Do, Hien Thi Thu;Lee, Yeon Jeong;Kim, Hark Jun;Rhee, Inmoo;Park, Shin Ae;Kim, Kwang Sung;Cho, Yang Je;Lee, Na Gyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1539-1548
    • /
    • 2017
  • Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen that commonly causes fatal infections in cystic fibrosis and burn patients as well as in patients who are hospitalized or have impaired immune systems. P. aeruginosa infections are difficult to treat owing to the high resistance of the pathogen to conventional antibiotics. Despite several efforts, no effective prophylactic vaccines against P. aeruginosa are currently available. In this study, we investigated the activity of the CIA06 adjuvant system, which is composed of alum and de-O-acylated lipooligosaccharide, on a P. aeruginosa outer membrane protein (OMP) antigen vaccine in mice. The results indicated that CIA06 significantly increased the antigen-specific IgG titers and opsonophagocytic activity of immune sera against P. aeruginosa. In addition, the antibodies induced by the CIA06-adjuvanted vaccine exhibited higher cross-reactivity with heterologous P. aeruginosa strains. Finally, mice immunized with the CIA06-adjuvanted vaccine were effectively protected from lethal P. aeruginosa challenge. Based on these data, we suggest that the CIA06 adjuvant system might be used to promote the immunogenicity and protective efficacy of the P. aeruginosa OMP vaccine.