Browse > Article
http://dx.doi.org/10.4014/jmb.1502.02031

Transcriptional Analysis of 10 Selected Genes in a Model of Penicillin G Induced Persistence of Chlamydophila psittaci in HeLa Cells  

Hu, Yanqun (Department of Microbiology and Immunology, University of South China)
Chen, Lili (Department of Microbiology and Immunology, University of South China)
Wang, Chuan (Department of Microbiology and Immunology, University of South China)
Xie, Yafeng (Department of Microbiology and Immunology, University of South China)
Chen, Zhixi (Department of Microbiology and Immunology, University of South China)
Liu, Liangzhuan (Department of Microbiology and Immunology, University of South China)
Su, Zehong (Department of Microbiology and Immunology, University of South China)
Wu, Yimou (Department of Microbiology and Immunology, University of South China)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.8, 2015 , pp. 1246-1256 More about this Journal
Abstract
Chlamydophila psittaci is an important intracellular pathogen. Persistent infection is an important state of the host-parasite interaction in this chlamydial infection, which plays a significant role in spreading the organism within animal populations and in causing chronic chlamydiosis and serious sequelae. In this study, a C. psittaci persistent infection cell model was induced by penicillin G, and real-time quantitative PCR was used to study the transcriptional levels of 10 C. psittaci genes (dnaA, dnaK, ftsW, ftsY, grpE, rpsD, incC, omcB, CPSIT_0846, and CPSIT_0042) in acute and penicillin-G-induced persistent infection cultures. Compared with the acute cultures, the penicillin-G-treated cultures showed a reduced chlamydial inclusion size and a significantly decreased number of elementary body particles. Additionally, some enlarged aberrant reticulate body particles were present in the penicillin-G-treated cultures but not the acute ones. The expression levels of genes encoding products for cell division (FtsW, FtsY) and outer membrane protein E encoding gene (CPSIT_0042) were downregulated (p < 0.05) from 6 h post-infection onward in the persistent infection cultures. Also from 6 h post-infection, the expression levels of DnaA, DnaK, IncC, RpsD, GrpE, and CPSIT_0846 were upregulated (p < 0.05); however, the expression level of OmcB in the persistent infection was< almost the same as that in the acute infection (p > 0.05). These results provide new insight regarding molecular activities that accompany persistence of C. psittaci, which may play important roles in the pathogenesis of C. psittaci infection.
Keywords
Chlamydophila psittaci; persistent infection; transcription; penicillin G;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hughes C, Maharg P, Rosario P, Herrell M, Bratt D, Salgado J, Howard D. 1997. Possible nosocomial transmission of psittacosis. Infect. Control Hosp. Epidemiol. 18: 165-168.   DOI
2 Jha HC, Srivastava P, Vardhan H, Singh LC, Bhengraj AR, Prasad J, Mittal A. 2011. Chlamydia pneumoniae heat shock protein 60 is associated with apoptotic signaling pathway in human atheromatous plaques of coronary artery disease patients. J. Cardiol. 58: 216-225.   DOI
3 Kaleta EF, Taday EM. 2003. Avian host range of Chlamydophila spp. based on isolation, antigen detection and serology. Avian Pathol. 32: 435-461.   DOI
4 Gaede W, Reckling KF, Dresenkamp B, Kenklies S, Schubert E, Noack U, et al. 2008. Chlamydophila psittaci infections in humans during an outbreak of psittacosis from poultry in Germany. Zoonoses Public Health 55: 184-188.   DOI
5 Kim JK. 2013. Epidemiological trends of sexually transmitted infections among women in Cheonan, South Korea, 2006-2012. J. Microbiol. Biotechnol. 23: 1484-1490.   DOI
6 Kokab A, Jennings R, Eley A, Pacey AA, Cross NA. 2010. Analysis of modulated gene expression in a model of interferongamma-induced persistence of Chlamydia trachomatis in HEp-2 cells. Microb. Pathog. 49: 217-225.   DOI
7 Lambden PR, Pickett MA, Clarke IN. 2006. The effect of penicillin on Chlamydia trachomatis DNA replication. Microbiology 152: 2573-2578.   DOI
8 Gerard HC, Freise J, Wang Z, Roberts G, Rudy D, Krauss-Opatz B, et al. 2002. Chlamydia trachomatis genes whose products are related to energy metabolism are expressed differentially in active vs. persistent infection. Microbes Infect. 4: 13-22.   DOI
9 Gerard HC, Whittum-Hudson JA, Schumacher HR, Hudson AP. 2006. Synovial Chlamydia trachomatis up regulates expression of a panel of genes similar to that transcribed by Mycobacterium tuberculosis during persistent infection. Ann. Rheum. Dis. 65: 321-327.   DOI
10 Goellner S, Schubert E, Liebler-Tenorio E, Hotzel H, Saluz HP, Sachse K. 2006. Transcriptional response patterns of Chlamydophila psittaci in different in vitro models of persistent infection. Infect. Immun. 74: 4801-4808.   DOI
11 Gupta R, Salhan S, Mittal A. 2009. Seroprevalence of antibodies against Chlamydia trachomatis inclusion membrane proteins B and C in infected symptomatis women. J. Infect. Dev. Ctries. 3: 191-198.
12 Charles PG, Whitby M, Fuller AJ, Stirling R, Wright AA, Korman TM, et al. 2008. The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy. Clin. Infect. Dis. 46: 1513-1521.   DOI
13 Gupta R, Srivastava P, Vardhan H, Salhan S, Mittal A. 2009. Host immune responses to chlamydial inclusion membrane proteins B and C in Chlamydia trachomatis infected women with or without fertility disorders. Reprod. Biol. Endocrinol. 7: 38.   DOI
14 Gupta R, Vardhan H, Srivastava P, Salhan S, Mittal A. 2009. Modulation of cytokines and transcription factors (T-Bet and GATA3) in CD4 enriched cervical cells of Chlamydia trachomatis infected fertile and infertile women upon stimulation with chlamydial inclusion membrane proteins B and C. Reprod. Biol. Endocrinol. 7: 84.   DOI
15 Cha SB, Yoo A, Park HT, Sung KY, Shin MK, Yoo HS. 2013. Analysis of transcriptional profiles to discover biomarker candidates in Mycobacterium avium subsp. paratuberculosisinfected macrophages, RAW 264.7. J. Microbiol. Biotechnol. 23: 1167-1175.   DOI
16 Clark RB, Schatzki PF, Dalton HP. 1982. Ultrastructural analysis of the effects of erythromycin on the morphology and developmental cycle of Chlamydia trachomatis HAR-13. Arch. Microbiol. 133: 278-282.   DOI
17 Coles AM, Reynolds DJ, Harper A, Devitt A, Pearce JH. 1993. Low-nutrient induction of abnormal chlamydial development: a novel component of chlamydial pathogenesis? FEMS Microbiol. Lett. 106: 193-200.   DOI
18 Dielissen PW, Teunissen DA, Lagro-Janssen AL. 2013. Chlamydia prevalence in the general population: is there a sex difference? A systematic review. BMC Infect. Dis. 13: 534.   DOI
19 Donachie WD. 1993. The cell cycle of Escherichia coli. Annu. Rev. Microbiol. 47: 199-230.   DOI
20 Fadel S, Eley A. 2007. Chlamydia trachomatis OmcB protein is a surface-exposed glycosaminoglycan-dependent adhesin. J. Med. Microbiol. 56: 15-22.   DOI
21 Fadel S, Eley A. 2008. Differential glycosaminoglycan binding of Chlamydia trachomatis OmcB protein from serovars E and LGV. J. Med. Microbiol. 57: 1058-1061.   DOI
22 Abdelrahman YM, Belland RJ. 2005. The chlamydial developmental cycle. FEMS Microbiol. Rev. 29: 949-959.   DOI
23 Beatty WL, Byrne GI, Morrison RP. 1993. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc. Natl. Acad. Sci. USA 90: 3998-4002.   DOI
24 Beatty WL, Morrison RP, Byrne GI. 1994. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol. Rev. 58: 686-699.
25 Beatty WL, Morrison RP, Byrne GI. 1995. Reactivation of persistent Chlamydia trachomatis infection in cell culture. Infect. Immun. 63: 199-205.
26 Belland RJ, Zhong G, Crane DD, Hogan D, Sturdevant D, Sharma J, et al. 2003. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 100: 8478-8483.   DOI
27 Branley JM, Roy B, Dwyer DE, Sorrell TC. 2008. Real-time PCR detection and quantitation of Chlamydophila psittaci in human and avian specimens from a veterinary clinic cluster. Eur. J. Clin. Microbiol. Infect. Dis. 27: 269-273.   DOI
28 Byrne GI, Ouellette SP, Wang Z, Rao JP, Lu L, Beatty WL, Hudson AP. 2001. Chlamydia pneumoniae expresses genes required for DNA replication but not cytokinesis during persistent infection of HEp-2 cells. Infect. Immun. 69: 5423-5429.   DOI
29 Raulston JE. 1997. Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect. Immun. 65: 4539-4547.
30 Schoborg RV. 2011. Chlamydia persistence - a tool to dissect chlamydia-host interactions. Microbes Infect. 13: 649-662.   DOI
31 Shen L, Li M, Zhang YX. 2004. Chlamydia trachomatis sigma28 recognizes the fliC promoter of Escherichia coli and responds to heat shock in chlamydiae. Microbiology 150: 205-215.   DOI
32 Smith KA, Bradley KK, Stobierski MG, Tengelsen LA, National Association of State Public Health Veterinarians Psittacosis Compendium C. 2005. Compendium of measures to control Chlamydophila psittaci (formerly Chlamydia psittaci) infection among humans (psittacosis) and pet birds, 2005. J. Am. Vet. Med. Assoc. 226: 532-539.   DOI
33 Theegarten D, Anhenn O, Hotzel H, Wagner M, Marra A, Stamatis G, et al. 2004. A comparative ultrastructural and molecular biological study on Chlamydia psittaci infection in alpha-1 antitrypsin deficiency and non-alpha-1 antitrypsin deficiency emphysema versus lung tissue of patients with hamartochondroma. BMC Infect. Dis. 4: 38.   DOI
34 Zhong G. 2011. Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front. Microbiol. 2: 14.   DOI
35 Thies FL, Karch H, Hartung HP, Giegerich G. 1999. Cloning and expression of the dnaK gene of Campylobacter jejuni and antigenicity of heat shock protein 70. Infect. Immun. 67: 1194-1200.
36 Wolf K, Fischer E, Hackstadt T. 2000. Ultrastructural analysis of developmental events in Chlamydia pneumoniae-infected cells. Infect. Immun. 68: 2379-2385.   DOI
37 Wyrick PB. 2010. Chlamydia trachomatis persistence in vitro: an overview. J. Infect. Dis. 201(Suppl 2): S88-S95.   DOI
38 Lee MJ, Min BJ, Choung HK, Kim N, Kim YA, Khwarg SI. 2014. Genome-wide DNA methylation profiles according to Chlamydophila psittaci infection and the response to doxycycline treatment in ocular adnexal lymphoma. Mol. Vis. 20: 1037-1047.
39 Mathews S, George C, Flegg C, Stenzel D, Timms P. 2001. Differential expression of ompA, ompB, pyk, nlpD and Cpn0585 genes between normal and interferon-gamma treated cultures of Chlamydia pneumoniae. Microb. Pathog. 30: 337-345.   DOI
40 Matsumoto A, Manire GP. 1970. Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci. J. Bacteriol. 101: 278-285.
41 Maurer AP, Mehlitz A, Mollenkopf HJ, Meyer TF. 2007. Gene expression profiles of Chlamydophila pneumoniae during the developmental cycle and iron depletion-mediated persistence. PLoS Pathog. 3: e83.   DOI
42 Mehta SJ, Miller RD, Ramirez JA, Summersgill JT. 1998. Inhibition of Chlamydia pneumoniae replication in HEp-2 cells by interferon-gamma: role of tryptophan catabolism. J. Infect. Dis. 177: 1326-1331.   DOI
43 Harkinezhad T, Verminnen K, De Buyzere M, Rietzschel E, Bekaert S, Vanrompay D. 2009. Prevalence of Chlamydophila psittaci infections in a human population in contact with domestic and companion birds. J. Med. Microbiol. 58: 1207-1212.   DOI
44 Ouellette SP, Hatch TP, Abdel Rahman YM, Rose LA, Belland RJ, Byrne GI. 2006. Global transcriptional upregulation in the absence of increased translation in Chlamydia during IFNgamma-mediated host cell tryptophan starvation. Mol. Microbiol. 62: 1387-1401.   DOI
45 Peters J, Hess S, Endlich K, Thalmann J, Holzberg D, Kracht M, et al. 2005. Silencing or permanent activation: host-cell responses in models of persistent Chlamydia pneumoniae infection. Cell. Microbiol. 7: 1099-1108.   DOI
46 Pettengill MA, Marques-da-Silva C, Avila ML, d'Arc dos Santos Oliveira S, Lam VW, Ollawa I, et al. 2012. Reversible inhibition of Chlamydia trachomatis infection in epithelial cells due to stimulation of P2X4 receptors. Infect. Immun. 80: 4232-4238.   DOI
47 Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P. 2004. Chlamydial persistence: beyond the biphasic paradigm. Infect. Immun. 72: 1843-1855.   DOI