• Title/Summary/Keyword: Outer membrane

Search Result 453, Processing Time 0.021 seconds

Psychrotolerance Mechanisms in Cold-Adapted Bacteria and their Perspectives as Plant Growth-Promoting Bacteria in Temperate Agriculture

  • Subramanian, Parthiban;Joe, Manoharan Melvin;Yim, Woo-Jong;Hong, Bo-Hui;Tipayno, Sherlyn C.;Saravanan, Venkatakrishnan Sivaraj;Yoo, Jae-Hong;Chung, Jong-Bae;Sultana, Tahera;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.625-636
    • /
    • 2011
  • Cold-adapted bacteria survive in extremely cold temperature conditions and exhibit various mechanisms of adaptation to sustain their regular metabolic functions. These adaptations include several physiological and metabolic changes that assist growth in a myriad of ways. Successfully sensing of the drop in temperature in these bacteria is followed by responses which include changes in the outer cell membrane to changes in the central nucleoid of the cell. Their survival is facilitated through many ways such as synthesis of cryoprotectants, cold acclimation proteins, cold shock proteins, RNA degradosomes, Antifreeze proteins and ice nucleators. Agricultural productivity in cereals and legumes under low temperature is influenced by several cold adopted bacteria including Pseudomonas, Acinetobacter, Burkholderia, Exiguobacterium, Pantoea, Rahnella, Rhodococcus and Serratia. They use plant growth promotion mechanisms including production of IAA, HCN, and ACC deaminase, phosphate solublization and biocontrol against plant pathogens such as Alternaria, Fusarium, Sclerotium, Rhizoctonia and Pythium.

The Experimental Model on Morphological Changes of the Liver Cell Treated with Ethanol (에타놀 처치 간세포(肝細胞)의 형태학적 변화에 대한 실험모델)

  • Lee, Jae-Hyun
    • Korean Journal of Veterinary Research
    • /
    • v.23 no.1
    • /
    • pp.45-56
    • /
    • 1983
  • In order to prepare an experimental model on the basis of morphological changes of liver, 90 rabbits were allocated into four groups and 5, 15, 30 and 50% of ethanol (5ml/day) were dosed to each group for 5, 10, 20, 30, 60 and 90 days, and observed the livers with light and electron microscope. The results obtained are summarized as follows: 1. Light microscopically, the hydropic changes were found in the liver from 10th day after 5% and 15% ethanol ingestion, and these findings were remarkable as time goes by. Necrosis of hepatocytes, however, was most remarkable on 60th and 90th day after ingestion. The proliferation of interlobular connective tissue was found from 30th day in this group. 2. The hydropic necrosis of liver cells was found from 5th day in 30% and 50% ethanol dosing groups. The proliferation of interlobular connective tissues and infiltration of the lymphocytes were observed from 30th day in 30% ethanol ingestion group, however, it was found from 20th day in 50% ethanol ingestion group. 3. Electron microscopically, the appearance of various lipid droplets and dilated rER, slightly increased sER and glycogen field, dense mitochondria with scanty cristae and hydropic change were observed on 5th day after 5% ethanol ingestion. These findings were more remarkable on 30th and 90th day. Especially, disorganized outer and inner membrane of mitochondria and autophagic vacuoles were appeared on 90th day. The similar findings were also found in 15%, 30% and 50% ethanol ingestion groups, however, the appearance of fibrillar and myelin-like structures were observed from 30th day after 15% ethanol ingestion. The severe hydropic change and increased sER were observed on 90th day after 15% ethanol ingestion. From 5th day after 30% and 50% ethanol ingestion these findings were more remarkable.

  • PDF

An Essential Role of the N-Terminal Region of ACSL1 in Linking Free Fatty Acids to Mitochondrial β-Oxidation in C2C12 Myotubes

  • Nan, Jinyan;Lee, Ji Seon;Lee, Seung-Ah;Lee, Dong-Sup;Park, Kyong Soo;Chung, Sung Soo
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.637-646
    • /
    • 2021
  • Free fatty acids are converted to acyl-CoA by long-chain acyl-CoA synthetases (ACSLs) before entering into metabolic pathways for lipid biosynthesis or degradation. ACSL family members have highly conserved amino acid sequences except for their N-terminal regions. Several reports have shown that ACSL1, among the ACSLs, is located in mitochondria and mainly leads fatty acids to the β-oxidation pathway in various cell types. In this study, we investigated how ACSL1 was localized in mitochondria and whether ACSL1 overexpression affected fatty acid oxidation (FAO) rates in C2C12 myotubes. We generated an ACSL1 mutant in which the N-terminal 100 amino acids were deleted and compared its localization and function with those of the ACSL1 wild type. We found that ACSL1 adjoined the outer membrane of mitochondria through interaction of its N-terminal region with carnitine palmitoyltransferase-1b (CPT1b) in C2C12 myotubes. In addition, overexpressed ACSL1, but not the ACSL1 mutant, increased FAO, and ameliorated palmitate-induced insulin resistance in C2C12 myotubes. These results suggested that targeting of ACSL1 to mitochondria is essential in increasing FAO in myotubes, which can reduce insulin resistance in obesity and related metabolic disorders.

Developing a Virus-Binding Bacterium Expressing Mx Protein on the Bacterial Surface to Prevent Grouper Nervous Necrosis Virus Infection

  • Lin, Chia-Hua;Chen, Jun-Jie;Cheng, Chiu-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1088-1097
    • /
    • 2021
  • Grouper nervous necrosis virus (GNNV) infection causes mass grouper mortality, leading to substantial economic loss in Taiwan. Traditional methods of controlling GNNV infections involve the challenge of controlling disinfectant doses; low doses are ineffective, whereas high doses may cause environmental damage. Identifying potential methods to safely control GNNV infection to prevent viral outbreaks is essential. We engineered a virus-binding bacterium expressing a myxovirus resistance (Mx) protein on its surface for GNNV removal from phosphate-buffered saline (PBS), thus increasing the survival of grouper fin (GF-1) cells. We fused the grouper Mx protein (which recognizes and binds to the coat protein of GNNV) to the C-terminus of outer membrane lipoprotein A (lpp-Mx) and to the N-terminus of a bacterial autotransporter adhesin (Mx-AIDA); these constructs were expressed on the surfaces of Escherichia coli BL21 (BL21/lpp-Mx and BL21/Mx-AIDA). We examined bacterial surface expression capacity and GNNV binding activity through enzyme-linked immunosorbent assay; we also evaluated the GNNV removal efficacy of the bacteria and viral cytotoxicity after bacterial adsorption treatment. Although both constructs were successfully expressed, only BL21/lpp-Mx exhibited GNNV binding activity; BL21/lpp-Mx cells removed GNNV and protected GF-1 cells from GNNV infection more efficiently. Moreover, salinity affected the GNNV removal efficacy of BL21/lpp-Mx. Thus, our GNNV-binding bacterium is an efficient microparticle for removing GNNV from 10‰ brackish water and for preventing GNNV infection in groupers.

Protective efficacy of attenuated Salmonella Typhimurium strain expressing BLS, Omp19, PrpA, or SOD of Brucella abortus in goats

  • Leya, Mwense;Kim, Won Kyong;Ochirkhuyag, Enkhsaikhan;Yu, Eun-Chae;Kim, Young-Jee;Yeo, Yoonhwan;Yang, Myeon-Sik;Han, Sang-Seop;Lee, John Hwa;Tark, Dongseob;Hur, Jin;Kim, Bumseok
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.15.1-15.13
    • /
    • 2021
  • Background: Attenuated Salmonella strain can be used as a vector to transport immunogens to the host antigen-binding sites. Objectives: The study aimed to determine the protective efficacy of attenuated Salmonella strain expressing highly conserved Brucella immunogens in goats. Methods: Goats were vaccinated with Salmonella vector expressing individually lipoprotein outer-membrane protein 19 (Omp19), Brucella lumazine synthase (BLS), proline racemase subunit A (PrpA), Cu/Zn superoxide dismutase (SOD) at 5 × 109 CFU/mL and challenge of all groups was done at 6 weeks after vaccination. Results: Among these vaccines inoculated at 5 × 109 CFU/mL in 1 mL, Omp19 or SOD showed significantly higher serum immunoglobulin G titers at (2, 4, and 6) weeks post-vaccination, compared to the vector control. Interferon-γ production in response to individual antigens was significantly higher in SOD, Omp19, PrpA, and BLS individual groups, compared to that in the vector control (all p < 0.05). Brucella colonization rate at 8 weeks post-challenge showed that most vaccine-treated groups exhibited significantly increased protection by demonstrating reduced numbers of Brucella in tissues collected from vaccinated groups. Real-time polymerase chain reaction revealed that Brucella antigen expression levels were reduced in the spleen, kidney, and parotid lymph node of vaccinated goats, compared to the non-vaccinated goats. Besides, treatment with vaccine expressing individual antigens ameliorated brucellosis-related histopathological lesions. Conclusions: These results delineated that BLS, Omp19, PrpA, and SOD proteins achieved a definite level of protection, indicating that Salmonella Typhimurium successfully delivered Brucella antigens, and that individual vaccines could differentially elicit an antigen-specific immune response.

Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae

  • Lee, Chaeyeong;Mannaa, Mohamed;Kim, Namgyu;Kim, Juyun;Choi, Yeounju;Kim, Soo Hyun;Jung, Boknam;Lee, Hyun-Hee;Lee, Jungkwan;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.445-458
    • /
    • 2019
  • The lipopolysaccharide (LPS) composed of lipid A, core, and O-antigen is the fundamental constituent of the outer membrane in gram-negative bacteria. This study was conducted to investigate the roles of LPS in Burkholderia glumae, the phytopathogen causing bacterial panicle blight and seedling rot in rice. To study the roles of the core oligosaccharide (OS) and the O-antigen region, mutant strains targeting the waaC and the wbiFGHI genes were generated. The LPS profile was greatly affected by disruption of the waaC gene and slight reductions were observed in the O-antigen region following wbiFGHI deletions. The results indicated that disruption in the core OS biosynthesis-related gene, waaC, was associated with increased sensitivity to environmental stress conditions including acidic, osmotic, saline, and detergent stress, and to polymyxin B. Moreover, significant impairment in the swimming and swarming motility and attenuation of bacterial virulence to rice were also observed in the waaC-defective mutant. The motility and virulence of O-antigen mutants defective in any gene of the wbiFGHI operon, were not significantly different from the wild-type except in slight decrease in swimming and swarming motility with wbiH deletion. Altogether, the results of present study indicated that the LPS, particularly the core OS region, is required for tolerance to environmental stress and full virulence in B. glumae. To our knowledge, this is the first functional study of LPS in a plant pathogenic Burkholderia sp. and presents a step forward toward full understanding of B. glumae pathogenesis.

A Brucella Omp16 Conditional Deletion Strain Is Attenuated in BALB/c Mice

  • Zhi, Feijie;Fang, Jiaoyang;Zheng, Weifang;Li, Junmei;Zhang, Guangdong;Zhou, Dong;Jin, Yaping;Wang, Aihua
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.6-14
    • /
    • 2022
  • Brucella spp. are facultative intracellular pathogens that invade, survive and proliferate in numerous phagocytic and non-phagocytic cell types, thereby leading to human and animal brucellosis. Outer membrane proteins (Omps) are major immunogenic and protective antigens that are implicated in Brucella virulence. A strain deleted of the omp16 gene has not been obtained which suggests that the Omp16 protein is vital for Brucella survival. Nevertheless, we previously constructed an omp16 conditional deletion strain of Brucella, ∆Omp16. Here, the virulence and immune response elicted by this strain were assessed in a mouse model of infection. Splenomegaly was significantly reduced at two weeks post-infection in ∆Omp16-infected mice compared to infection with the parental strain. The bacterial load in the spleen also was significantly decreased at this post-infection time point in ∆Omp16-infected mice. Histopathological changes in the spleen were observed via hematoxylin-eosin staining and microscopic examination which showed that infection with the ∆Omp16 strain alleviated spleen histopathological alterations compared to mice infected with the parental strain. Moreover, the levels of humoral and cellular immunity were similar in both ∆Omp16-infected mice and parental strain-infected mice. The results overall show that the virulence of ∆Omp16 is attenuated markedly, but that the immune responses mediated by the deletion and parental strains in mice are indistinguishable. The data provide important insights that illuminate the pathogenic strategies adopted by Brucella.

Inhibition of mitoNEET induces Pink1-Parkin-mediated mitophagy

  • Lee, Seunghee;Lee, Sangguk;Lee, Seon-Jin;Chung, Su Wol
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.354-359
    • /
    • 2022
  • MitoNEET, a mitochondrial outer membrane protein containing the Asn-Glu-Glu-Thr (NEET) sequence, controls the formation of intermitochondrial junctions and confers autophagy resistance. Moreover, mitoNEET as a mitochondrial substrate undergoes ubiquitination by activated Parkin during the initiation of mitophagy. Therefore, mitoNEET is linked to the regulation of autophagy and mitophagy. Mitophagy is the selective removal of the damaged or unnecessary mitochondria, which is crucial to sustaining mitochondrial quality control. In numerous human diseases, the accumulation of damaged mitochondria by impaired mitophagy has been observed. However, the therapeutic strategy targeting of mitoNEET as a mitophagy-enhancing mediator requires further research. Herein, we confirmed that mitophagy is indeed activated by mitoNEET inhibition. CCCP (carbonyl cyanide m-chlorophenyl hydrazone), which leads to mitochondrial depolarization, induces mitochondrial dysfunction and superoxide production. This, in turn, contributes to the induction of mitophagy; mitoNEET protein levels were initially increased before an increase in LC3-II protein following CCCP treatment. Pharmacological inhibition of mitoNEET using mitoNEET Ligand-1 (NL-1) promoted accumulation of Pink1 and Parkin, which are mitophagy-associated proteins, and activation of mitochondria-lysosome crosstalk, in comparison to CCCP alone. Inhibition of mitoNEET using NL-1, or mitoNEET shRNA transfected into RAW264.7 cells, abrogated CCCP-induced ROS and mitochondrial cell death; additionally, it activated the expression of PGC-1α and SOD2, regulators of oxidative metabolism. In particular, the increase in PGC-1α, which is a major regulator of mitochondrial biogenesis, promotes mitochondrial quality control. These results indicated that mitoNEET is a potential therapeutic target in numerous human diseases to enhance mitophagy and protect cells by maintaining a network of healthy mitochondria.

Biodegradation of marine microplastics by the whole-cell catalyst overexpressing recombinant PETase (PET분해효소(PETase) 과발현 전세포 촉매의 해양미세플라스틱 생분해 활성 연구)

  • Hyunji, Kim;Jong-Ha, Park;Ae-Ran, Park;Dae-Hee, Lee;Joonho, Jeon;Hyuk Taek, Kwon;Sung In, Lim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The increased production and consumption of polyethylene terephthalate (PET)-based products over the past several decades has resulted in the discharge of countless tons of PET waste into the marine environment. PET microparticles resulting from the physical erosion of general PET wastes end up in the ocean and pose a threat to the marine biosphere and human health, necessitating the development of new technologies for recycling and upcycling. Notably, enzyme-mediated PET degradation is an appealing option due to its eco-friendly and energy-saving characteristics. PETase, a PET-hydrolyzing enzyme originating from Ideonella sakaiensis, is one of the most thoroughly researched biological catalysts. However, the industrial application of PETase-mediated PET recycling is limited due to the low stability and poor reusability of the enzyme. Here we developed the whole-cell catalyst (WCC) in which functional PETase is attached to the outer membrane of Escherichia coli. Immunoassays are used to identify the surface-expressed PETase, and we demonstrated that the WCC degraded PET microparticles most efficiently at 30℃ and pH 9 without agitation. Furthermore, the WCC increased the PET-degrading activity in a concentration-dependent manner, surpassing the limited activity of soluble PETase above 100 nM. Finally, we demonstrated that the WCC could be recycled up to three times.

Reduction of Hexavalent Chromium by Shewanella sp. HN-41 in the Presence of Ferric-Citrate (구연산철 환원 조건하에서 Shewanella sp. HN-41에 의한 6가 크롬의 환원)

  • Hyemin Park;Jin-Hyeob Kwak;Ji-Hoon Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.253-258
    • /
    • 2023
  • In the environment, chromium often exists in a highly mobile and toxic form of Cr(VI). Therefore, the reduction of Cr(VI) to less toxic Cr(III) is considered an effective remediation strategy for Cr(VI)-contamination. In this study, the biological reduction of hexavalent chromium was examined at the concentrations of 0.01 mM, 0.1 mM, and 1 mM Cr(VI) by the dissimilatory metal-reducing bacterium, Shewanella sp. HN-41 in the presence of ferric-citrate. With the relatively condensed cell densities, the aqueous phase Cr(VI) was reduced at the proportions of 42%, 23%, and 31%, respectively for the 0.01 mM, 0.1 mM, and 1 mM Cr(VI) incubations, while Fe(III)-citrate was reduced at 95%, 88%, and 73%, respectively. Although the strain HN-41 was not considered to reduce Cr(VI) as the sole electron acceptor for anaerobic metabolism in the preliminary experiment, it has been presumed that outer-membrane c-type cytochromes such as MtrC and OmcA reduced Cr(VI) in the presence of ferric-citrate as the electron acceptor. Since this study indicated the potential of relatively high cell density for Cr(VI) reduction, it might propose a bioremediation strategy for Cr(VI) removal from contaminated waters using engineered systems such as bioreactors employing high cell growths.