• Title/Summary/Keyword: Outdoor walk

Search Result 20, Processing Time 0.029 seconds

Parameter Analysis Method for Terrain Classification of the Legged Robots (보행로봇의 노면 분류를 위한 파라미터 분석 방법)

  • Ko, Kwang-Jin;Kim, Ki-Sung;Kim, Wan-Soo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • Terrain recognition ability is crucial to the performance of legged robots in an outdoor environment. For instance, a robot will not easily walk and it will tumble or deviate from its path if there is no information on whether the walking surface is flat, rugged, tough, and slippery. In this study, the ground surface recognition ability of robots is discussed, and to enable walking robots to recognize the surface state and changes, a central moment method was used. The values of the sensor signals (load cell) of robots while walking were detected in the supported section and were analyzed according to signal variance, skewness, and kurtosis. Based on the results of such analysis, the surface state was detected and classified.

Motion-capture-based walking simulation of digital human adapted to laser-scanned 3D as-is environments for accessibility evaluation

  • Maruyama, Tsubasa;Kanai, Satoshi;Date, Hiroaki;Tada, Mitsunori
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.250-265
    • /
    • 2016
  • Owing to our rapidly aging society, accessibility evaluation to enhance the ease and safety of access to indoor and outdoor environments for the elderly and disabled is increasing in importance. Accessibility must be assessed not only from the general standard aspect but also in terms of physical and cognitive friendliness for users of different ages, genders, and abilities. Meanwhile, human behavior simulation has been progressing in the areas of crowd behavior analysis and emergency evacuation planning. However, in human behavior simulation, environment models represent only "as-planned" situations. In addition, a pedestrian model cannot generate the detailed articulated movements of various people of different ages and genders in the simulation. Therefore, the final goal of this research was to develop a virtual accessibility evaluation by combining realistic human behavior simulation using a digital human model (DHM) with "as-is" environment models. To achieve this goal, we developed an algorithm for generating human-like DHM walking motions, adapting its strides, turning angles, and footprints to laser-scanned 3D as-is environments including slopes and stairs. The DHM motion was generated based only on a motion-capture (MoCap) data for flat walking. Our implementation constructed as-is 3D environment models from laser-scanned point clouds of real environments and enabled a DHM to walk autonomously in various environment models. The difference in joint angles between the DHM and MoCap data was evaluated. Demonstrations of our environment modeling and walking simulation in indoor and outdoor environments including corridors, slopes, and stairs are illustrated in this study.

An Evaluation of Outdoor Living Environments for Senior Citizens - Focused on the Prospective Seniors and Senior Citizens in Daejeon - (고령자를 위한 거주지 외부환경 평가 - 대전시 거주 준고령자 이상을 대상으로 -)

  • Lee, Shi-Young;Lee, Hei-Jung;Lim, Byung-Ho;Shim, Joon-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.39-48
    • /
    • 2011
  • Korea is rapidly becoming an aging society. This study aims to examine the existing conditions of outdoor living environments to assist a healthy lifestyle for senior citizens and to determine the most influential factor in a senior-friendly outdoor space as well as to suggest improvements in existing conditions focused on the prospective senior population. This study relied on two methods: a descriptive method of researching publications and related scholastic writings and an empirical study that included a survey of present conditions and interviews with the prospective seniors and senior citizens in Daejeon. Conditions of outdoor living environments for seniors were found to be more than adequate in general. But some factors evaluated as low must be carefully tailored for seniors. First, the study showed that seniors evaluated as highest the 'use of a walkway' for a stroll and stayed outside for 1~2 hours at a time. Many vehicles parked in walkways were the most inconvenient factors in going for a walk. Second, the study showed that the evaluation of outdoor space was about average and 'sociality' was evaluated as the lowest. Third, the study showed that men evaluated lower than women 4 items: 'use and convenience of a wheelchair', 'night lighting', 'discrimination of signage at nighttime' and 'trees'. Respondents above the age of 66 are more uncomfortable with items such as 'slippery walking surface', 'stair handrail', 'discrimination of signage at nighttime' and 'direction of apartment complex' while respondents above the age of 80 are more uncomfortable with items of 'slippery walking surface', 'stair handrail' and 'discrimination of signage at nighttime'. Fourth, the evaluation by existing housing patterns was statistically significant in 20 of 22 evaluated items. This means that residents in apartment complex evaluated as high these items in general. In this study, existing outdoor living environments for the elderly did not display any immediately serious issues in the overall evaluation items. Assuming, however, that the aging population will quickly increase in the next ten years, items which are evaluated as low in descriptive statistics and items which give inconvenience to the elderly above the age of 80 in particular will need to be the first areas to be improved.

Effect of Carrying Weight on the Gait of Elderly Women when using a Walking Assistant Vehicle

  • Roh, Hyo-Lyun;Son, Sung-Min;Kwag, Sung-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • PURPOSE: This study was conducted to analyze the effects of carrying weight on the gait of elderly women using a walking-assistant vehicle (WAV) as the weight increased. METHODS: A total of 30 elderly women living in the local community were included as subjects and instructed to walk 50 m using a WAV loaded with sandbags corresponding to 0%, 5%, 10%, or 15% of their mean weight. The subjects' gait was analyzed using a gait analyzer to measure stride length, step length, step width, and gait time. RESULTS: Stride and step lengths were longest when carrying 5% of their weight and shortest when carrying 15% of their mean body weight. Step width and gait time were lowest when carrying weights corresponding to 5% and highest for 15% of their mean body weight. When observing gait with a WAV, the gait time was greatly affected by weights, with carrying weight equivalent to 5% of the body weight positively affected the gait with a WAV, whereas carrying weights of >15% resulted in slower gait speed. CONCLUSION: When walking with a WAV, an appropriate carrying weight of approximately 5% of the body weight stabilizes gait, while a weight of 15% leads decreased gait efficiency. Therefore, when using a WAV during outdoor activities, elderly women should add some weight to the WAV; however, the carrying weight should be <15% of the body weight.

Low-cost System with Handheld Analyzer for Optimizing the Position of Indoor Base Stations

  • Lee, C.C.;Xu, Degang;Chan, George
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.404-420
    • /
    • 2021
  • In this paper, an automatic system of locating the indoor area with weak or no mobile signal was proposed and demonstrated experimentally by using the Internet of Things (IoT) technology. Nowadays, the technicians of mobile services providers need to go along with numerous heavy equipment to measure and record the mobile signal strength at outside environment. Recently, there are systems proposed to do such measurement at outdoor area by using the IoT technology automatically. However, these works could not be applied in the indoor area since there are difficulties to do the indoor mapping and positioning. In this work, the Bluetooth Low Energy (BLE) was used to tackle these two difficulties. After a proper placement of BLE in the testing site, while the technician walk around with a handheld analyzer, the data can be obtained accordingly for further analysis in the proposed system which includes the construction of floor plan, detection of mobile signal strength and suggestion of indoor base stations. The gift wrapping and centroid algorithms were used during the analysis. The experimental results showed that the proposed system successfully demonstrated the indoor mapping, positioning of weak mobile signal area and suggestion of indoor base stations for the normal rectangular rooms with an area of 100 m2 on single floor.

Combined training improves body composition, balance, and muscle function in sarcopenia elderly

  • Jung, Won Sang;Moon, Hwang Woon
    • Journal of Sport and Applied Science
    • /
    • v.5 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • Purpose: Sarcopenia is defined as a decrease in muscle mass, strength, and function with age that affects overall body function. We aimed to investigate the effect of combined training on body composition, balance, and muscle function in sarcopenia elderly. Research design, data, and methodology: Twenty-eight sarcopenia elderly (age 74.9±4.5 years) were randomly assigned to an exercise, EG (n=14), or a control, CG (n=14), group. The EG performed an intervention consisting of combined exercise training (60-75 min) for a total of 12 weeks, three times a week. The CG maintained their usual daily lifestyle during the intervention period. We measured body weight, body mass index (BMI), % body fat, free fat mass, balance ability, peak torque in shoulder, knee, and lumbar joints normalized for bodyweight in one second. Results: The EG showed improved body composition (i.e., BMI, fat-free body mass, fat mass; all p < 0.031, η2 > 0.179), balance (i.e., right and left of static and dynamic balance and fast 10 m walk; all p < 0.049, η2 > 0.152), and muscular function (i.e., 90°/sec and 180°/sec peak power per kg bodyweight, 90°/sec average power per kg bodyweight, 180°/sec total work, and 180°/sec endurance ratio; all p < 0.045, η2 > 0.158). Conclusions: Combined exercise training improves muscle mass and strength, body composition, balance, and muscle function in sarcopenia elderly.

A System with Efficient Managing and Monitoring for Guidance Device (보행안내 기기의 효과적인 관리 및 모니터링을 위한 시스템)

  • Lee, Jin-Hee;Lee, Eun-Seok;Shin, Byeong-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.4
    • /
    • pp.187-194
    • /
    • 2016
  • When performing experiments in indoor and outdoor environment, we need a system that monitors a volunteer to prevent dangerous situations and efficiently manages the data in real time. We developed a guidance device for visually impaired person that guides the user to walk safely to the destination in the previous study. We set a POI (Point of Interest) of a specific location indoors and outdoors and tracks the user's position and navigate the walking path using artificial markers and ZigBee modules as landmark. In addition, we develop path finding algorithm to be used for navigation in the guidance device. In the test bed, the volunteers are exposed to dangerous situations and can be an accident due to malfunction of the device since they are visually impaired person or normal person wearing a eye patch. Therefore the device requires a system that remotely monitors the volunteer wearing guidance device and manages indoor or outdoor a lot of map data. In this paper, we introduce a managing system that monitors the volunteers remotely and handles map data efficiently. We implement a management system which can monitor the volunteer in order to prevent a hazardous situation and effectively manage large amounts of data. In addition, we verified the effectiveness of the proposed system through various experiments.

Walking assistance system using texture for visually impaired person (질감 특징을 이용한 시각장애인용 보행유도 시스템)

  • Weon, Sun-Hee;Choi, Hyun-Gil;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.77-85
    • /
    • 2011
  • In this paper, we propose an region segmentation and texture based feature extraction method which split the pavement and roadway from the camera which equipped to the visually impaired person during a walk. We perform the hough transformation method for detect the boundary between pavement and roadway, and devide the segmented region into 3-level according to perspective. Next step, split into pavement and roadway according to the extracted texture feature of segmented regions. Our walking assistance system use rotation-invariant LBP and GLCM texture features for compare the characteristic of pavement block with various pattern and uniformity roadway. Our proposed method show that can segment two regions with illumination invariant in day and night image, and split there regions rotation and occlution invariant in complexed outdoor image.

Development of a WLAN Based Monitoring System for Group Activity Measurement in Real-Time

  • Tsunoda, Hiroshi;Nakayama, Hidehisa;Ohta, Kohei;Suzuki, Akihiro;Nishiyama, Hiroki;Nagatomi, Ryoichi;Hashimoto, Kazuo;Waizumi, Yuji;Keeni, Glenn Mansfield;Nemoto, Yoshiaki
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.86-94
    • /
    • 2011
  • In recent years, there has been a rise in epidemiological evidence suggesting the health benefits of a physically active lifestyle. However, it is not always easy for individuals to personally recognize the optimal conditions for exercise and physical activity. Wearable acceleration-based pedometers have become widely used in estimating the amount of physical activity, and to a limited extent, providing information regarding exercise intensity, but they have never been used to assess adaptation to exercise. In order to realize simultaneous activity monitoring for multiple users exercising outdoors, we developed a prototype wireless local area network (WLAN) based system. In our system, a WLAN is deployed outside, and a user wearing a smart phone and monitoring device exercises freely within the coverage area of the wireless network. By doing so, the developed system is able to monitor the activity of each user andmeasures various parameters including those related to exercise adaptation. In a demonstration experiment, the developed system was evaluated and used to monitor users enjoying a Nordic walk, after which users were immediately able to receive their exercise report. In this paper, we discuss the requirements and issues in developing an activity monitoring system and report the findings we obtained through the demonstration experiment.

Effect of Fabric Sensor Type and Measurement Location on Respiratory Detection Performance (직물센서의 종류와 측정 위치가 호흡 신호 검출 성능에 미치는 효과)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Hyeok-Jae;Lee, Jeong-Hwan;Kwak, Hwi-Kuen;Ko, Yun-Su;Chae, Je-Wook;Oh, Su-Hyeon;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.22 no.4
    • /
    • pp.97-106
    • /
    • 2019
  • The purpose of this study was to investigate the effect of the type and measurement location of a fabric strain gauge sensor on the detection performance for respiratory signals. We implemented two types of sensors to measure the respiratory signal and attached them to a band to detect the respiratory signal. Eight healthy males in their 20s were the subject of this study. They were asked to wear two respiratory bands in turns. While the subjects were measured for 30 seconds standing comfortably, the respiratory was given at 15 breaths per minute were synchronized, and then a 10-second break; subsequently, the entire measurement was repeated. Measurement locations were at the chest and abdomen. In addition, to verify the performance of respiratory measurement in the movement state, the subjects were asked to walk in place at a speed of 80 strides per minute(SPM), and the respiratory was measured using the same method mentioned earlier. Meanwhile, to acquire a reference signal, the SS5LB of BIOPAC Systems, Inc., was worn by the subjects simultaneously with the experimental sensor. The Kruskal-Wallis test and Bonferroni post hoc tests were performed using SPSS 24.0 to verify the difference in measurement performances among the group of eight combinations of sensor types, measurement locations, and movement states. In addition, the Wilcoxon test was conducted to examine whether there are differences according to sensor type, measurement location, and movement state. The results showed that the respiratory signal detection performance was the best when the respiratory was measured in the chest using the CNT-coated fabric sensor regardless of the movement state. Based on the results of this study, we will develop a chest belt-type wearable platform that can monitor the various vital signal in real time without disturbing the movements in an outdoor environment or in daily activities.