• 제목/요약/키워드: Outdoor localization

검색결과 74건 처리시간 0.025초

실외 이동로봇의 고도지도 기반 위치인식을 위한 고도관성모멘트 추출 및 정합 (Extraction and Matching of Elevation Moment of Inertia for Elevation Map-based Localization of an Outdoor Mobile Robot)

  • 권태범;송재복;강신천
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.203-210
    • /
    • 2009
  • The problem of outdoor localization can be practically solved by GPS. However, GPS is not perfect and some areas of outdoor navigation should consider other solutions. This research deals with outdoor localization using an elevation map without GPS. This paper proposes a novel feature, elevation moment of inertia (EMOI), which represents the distribution of elevation as a function of distance from a robot in the elevation map. Each cell of an elevation map has its own EMOI, and outdoor localization can be performed by matching EMOIs obtained from the robot and the pre-given elevation map. The experiments and simulations show that the proposed EMOI can be usefully exploited for outdoor localization with an elevation map and this feature can be easily applied to other probabilistic approaches such as Markov localization method.

실외 이동로봇의 고도지도 기반의 전역 위치추정을 위한 Hausdorff 거리 정합 기법 (Hausdorff Distance Matching for Elevation Map-based Global Localization of an Outdoor Mobile Robot)

  • 지용훈;송재복;백주현;유재관
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.916-921
    • /
    • 2011
  • Mobile robot localization is the task of estimating the robot pose in a given environment. This research deals with outdoor localization based on an elevation map. Since outdoor environments are large and contain many complex objects, it is difficult to robustly estimate the robot pose. This paper proposes a Hausdorff distance-based map matching method. The Hausdorff distance is exploited to measure the similarity between extracted features obtained from the robot and elevation map. The experiments and simulations show that the proposed Hausdorff distance-based map matching is useful for robust outdoor localization using an elevation map. Also, it can be easily applied to other probabilistic approaches such as a Markov localization method.

자동차형 로봇의 도시 실외에서의 효율적인 위치 추정 및 네비게이션 시스템의 구현 (An Efficient Urban Outdoor Localization and Navigation System for Car-like Mobile Robots)

  • 윤건우;김진백;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.745-754
    • /
    • 2013
  • An efficient urban outdoor localization and navigation system is proposed for car-like robots. First an accurate outdoor localization method is suggested using line/arc features and 2.5D map matching with LRFs (Laser Range Finders), which can reduce the number of singular cases and increase accuracy. Also, path generation, path tracking, and path modification algorithms are proposed for navigation. All these algorithms are implemented on an electric scooter to construct an autonomous urban outdoor localization and navigation system. Experiments reveal the practicality of the proposed system.

정밀 GPS 기반의 실외환경에서의 로봇 위치 추정 및 OpenRTM을 이용한 모니터링 (Robot Localization and Monitoring using OpenRTM in Outdoor Environment based on Precision GPS)

  • 문용선;노상현;조광훈;배영철
    • 한국전자통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.425-431
    • /
    • 2012
  • 로봇의 실외 주행의 경우 실내 주행과 달리 실외 환경 전체에 대한 지도를 미리 작성할 수 없어 대부분 GPS를 이용하고 있으며 지도에 기반한 연구는 거의 없는 상황이다. 본 논문에서는 경사 구간이 없는 2차원 평면의 실외환경에서 정밀 GPS를 사용하여 GPS 데이터를 MCL 알고리즘에 적용하여 실외 로봇 위치 추정을 구현하고, 이를 적용하여 간단한 임무 시나리오를 수행하였다. 그리고 미들웨어 기반의 OpenRTM을 적용하여 관리자가 서버를 통해 원격으로 로봇을 제어하거나 상황을 관제할 수 있도록 하였다.

다중 센서 융합을 사용한 자동차형 로봇의 효율적인 실외 지역 위치 추정 방법 (An Efficient Outdoor Localization Method Using Multi-Sensor Fusion for Car-Like Robots)

  • 배상훈;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.995-1005
    • /
    • 2011
  • An efficient outdoor local localization method is suggested using multi-sensor fusion with MU-EKF (Multi-Update Extended Kalman Filter) for car-like mobile robots. In outdoor environments, where mobile robots are used for explorations or military services, accurate localization with multiple sensors is indispensable. In this paper, multi-sensor fusion outdoor local localization algorithm is proposed, which fuses sensor data from LRF (Laser Range Finder), Encoder, and GPS. First, encoder data is used for the prediction stage of MU-EKF. Then the LRF data obtained by scanning the environment is used to extract objects, and estimates the robot position and orientation by mapping with map objects, as the first update stage of MU-EKF. This estimation is finally fused with GPS as the second update stage of MU-EKF. This MU-EKF algorithm can also fuse more than three sensor data efficiently even with different sensor data sampling periods, and ensures high accuracy in localization. The validity of the proposed algorithm is revealed via experiments.

GPS 정보와 차선정보의 정합을 통한 이동로봇의 실외 위치추정 (Outdoor Localization through GPS Data and Matching of Lane Markers for a Mobile Robot)

  • 지용훈;배지훈;송재복;유재관;백주현
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.594-600
    • /
    • 2012
  • Accurate localization is very important to stable navigation of a mobile robot. This paper deals with local localization of a mobile robot especially for outdoor environments. The GPS information is the easiest way to obtain the outdoor position information. However, the GPS accuracy can be severely affected by environmental conditions. To deal with this problem, the GPS and wheel odometry can be combined using an EKF (Extended Kalman Filter). However, this is not enough for safe navigation of a mobile robot in outdoor environments. This paper proposes a novel method using lane features from the road image. The pose data of a mobile robot can be corrected by analyzing the detected lane features. This can improve the accuracy of the localization process substantially.

레이저 레인지 파인더와 2½D 지도 기반의 선분/호 개체를 이용한 이동 로봇의 실외 위치 추정 알고리즘 (Outdoor Mobile Robot Localization Algorithm using Line/Arc Features based on Laser Range Finders and 2½D Map)

  • 윤건우;김진백;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.658-663
    • /
    • 2012
  • An accurate outdoor localization method using line/arc features is suggested for mobile robots with LRFs (Laser Range Finders) and odometry. Localization is a key process for outdoor mobile robots which are used for autonomous navigation, exploration and so on. In this paper, an accurate pose correction algorithm is proposed for mobile robots using LRFs, which use three feature types: line, circle, and arc. Using this method we can reduce the number of singular cases that robots couldn't find their pose. Finally we have got simulation results to validate the proposed algorithm.

가중화된 GPS 정보와 지도정보를 활용한 실외 이동로봇의 위치추정 (Outdoor Localization of a Mobile Robot Using Weighted GPS Data and Map Information)

  • 배지훈;송재복;최지훈
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.292-300
    • /
    • 2011
  • Global positioning system (GPS) is widely used to measure the position of a vehicle. However, the accuracy of the GPS can be severely affected by surrounding environmental conditions. To deal with this problem, the GPS and odometry data can be combined using an extended Kalman filter. For stable navigation of an outdoor mobile robot using the GPS, this paper proposes two methods to evaluate the reliability of the GPS data. The first method is to calculate the standard deviation of the GPS data and reflect it to deal with the uncertainty of the GPS data. The second method is to match the GPS data to the traversability map which can be obtained by classifying outdoor terrain data. By matching of the GPS data with the traversability map, we can determine whether to use the GPS data or not. The experimental results show that the proposed methods can enhance the performance of the GPS-based outdoor localization.

전동 스쿠터를 위한 DGPS 기반의 위치 추정 및 반 자율 주행 시스템 개발 (Development of a DGPS-Based Localization and Semi-Autonomous Path Following System for Electric Scooters)

  • 송의규;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.674-684
    • /
    • 2011
  • More and more elderly and disabled people are using electric scooters instead of electric wheelchairs because of higher mobility. However, people with high levels of impairment or the elderly still have difficulties in driving the electric scooters safely. Semi-autonomous electric scooter system is one of the solutions for the safety: Either manual driving or autonomous driving can be used selectively. In this paper, we implement a semi-autonomous electric scooter system with functions of localization and path following. In order to recognize the pose of electric scooter in outdoor environments, we design an outdoor localization system based on the extended Kalman filter using DGPS (Differential Global Positioning System) and wheel encoders. We added an accelerometer to make the localization system adaptable to road condition. Also we propose a path following algorithm using two arcs with current pose of the electric scooter and a given path in the map. Simulation results are described to show that the proposed algorithms provide the ability to drive an electric scooter semi-autonomously. Finally, we conduct outdoor experiments to reveal the practicality of the proposed system.

SDS-TWR based Location Compensation Mechanism for Localization System in Wireless Sensor Network

  • Lee, Dong-Myung
    • 공학교육연구
    • /
    • 제13권5호
    • /
    • pp.76-80
    • /
    • 2010
  • In this paper, the Location Compensation Mechanism using equivalent distance rate ($LCM_{edr}$) for localization system based on SDS-TWR (Symmetric Double-Sided Two-Way Ranging) in wireless sensor network is proposed. The performance of the mechanism is experimented in terms of two types of the localization tracking scenarios of indoor and outdoor environments in university campus. From the experimentations, the compensation ratio in the $LCM_{edr}$ is better than that in SDS-TWR about 90% in indoor/outdoor environments in scenario 1 but also is better than that of SDS-TWR about 91.7% in indoor environment and about 100% in outdoor environment in scenario 2 respectively.

  • PDF