• Title/Summary/Keyword: Outdoor Air Conditioning Energy

Search Result 146, Processing Time 0.022 seconds

A Study on Operating Method by Energy Evaluation and Performance Evaluation of Heat Recovery Ventilator According to Outdoor Conditions (전열교환 환기시스템의 외기변화에 따른 성능평가 및 에너지평가를 통한 운전방안에 관한 연구)

  • Kim, Kwang-Hyun;Yee, Jurng-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • Recently, regulation of ventilator installation and its details has been revised and the establishment of heat recovery ventilator in newly built apartments has been obligated. This study was done to offer the method of operation and design of heat recovery ventilator to save energy by measuring its efficiency and comparing with the results of experiment. This paper confirmed that it is desirable to operate heat recovery ventilator by using "by-pass mode" within $60{\sim}80%$ scope of the difference indoor absolute humidity in spring and autumn and outdoor absolute humidity and heat recovery ventilator of energy saving effect is better than constant air volume system.

An Experimental Study on the Ventilation Characteristics of a Wind-Turbine Natural Ventilator According to the Outdoor-Wind Velocity and the Indoor/Outdoor-Temperature Difference (윈드터빈 자연환기 장치의 외기풍속 및 온도차에 따른 환기특성에 관한 실험연구)

  • Han, Dong-Hun;Kim, Yeong-Sik;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • With the improvement of living standards, the ventilation for the mitigation of indoor or outdoor air-pollution problems has recently attracted a lot of attention. Consequently, the ventilation for the supply of outdoor fresh air into a room is treated as an important building-design factor. The ventilation is generally divided into the forced and natural types; here, the former can control the ventilation rate by using mechanical devices, but it has the disadvantages of the equipment costs, maintenance costs, and noise generation, while the latter is applied to most workshops due to the absence of noise and the low installation and maintenance costs. In this experimental study, the ventilation performance of a typical rotating-type natural ventilator, which is called a "wind turbine," was investigated with the outdoor-wind velocity and the indoor/outdoor-temperature difference. From the experiment results, it was confirmed that the temperature difference of $10^{\circ}C$ corresponds to the ventilation driving force with an outdoor-wind velocity of 1.0 m/s. Additionally, the intake-opening area of a building also exerts a great effect on the ventilation rates.

Application of the Outdoor Air Temperature Prediction Control for Intermittent Heating Residences (간헐난방주택에 대한 외기온도 예측제어 적용 연구)

  • 태춘섭;조성환;이충구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.682-691
    • /
    • 2001
  • Most of radiant floor heating systems are operated in the intermittent heating mode in Korea. The application possibility of predictive suboptimal control for Koran residential house was investigated by computer simulation and experiment. For this study, TRNSYS program was used and an experimental facility consisting of tow rooms ($3\times4.4\times2.8 m$) identical in construction was built. The facility enabled simultaneous comparison of two different control method. And real multi residential hose was investigated. Results showed that outdoor air temperature prediction control was superior to the conventional control for radiant floor heating system operated in the intermittent heating mode. New control system resulted in good thermal environment and les energy consumption.

  • PDF

Performance Simulation of a Ventilation System Adopting a Regenerative Evaporative Cooler (재생증발식 냉방기를 이용한 환기 냉방시스템의 성능해석)

  • Chang, Y.S.;Lee, D.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • Cooling load reduction was analysed of a ventilation system adopting a regenerative evaporative cooler. The regenerative evaporative cooler is a kind of indirect evaporative cooler which cools the air down to its inlet dewpoint temperature in principle without change in the humidity ratio. The regenerative evaporative cooler was found able to cool the ventilation air to $18{\sim}21^{\circ}C$ when the outdoor condition ranges $25{\sim}35^{\circ}C$ and 0.01~0.02 kg/kg. When the outdoor humidity ratio is lower than 0.018 kg/kg, the regenerative evaporative cooler was found to provide cooling performance enough to compensate the ventilation load completely and to supply additional cooling as well. Energy simulation during the summer was carried out for a typical office building with the ventilation system using the regenerative evaporative cooler. The results showed that the seasonal cooling load can be reduced by about 40% by applying the regenerative evaporative cooler as a ventilation conditioner. The reduction was found to increase as the outdoor temperature increases and the outdoor humidity ratio decreases.

The Performance Analysis of a Return Air Bypass Air Conditioning System by a Simulator Experiment (실물실험에 의한 순환공기 바이패스 공조시스템의 성능분석)

  • 신현준;김보철;김정엽
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.130-135
    • /
    • 2002
  • Bypass air conditioning systems are divided into three types; outdoor air bypass, mixed air bypass and return air bypass system. Among bypass air conditioning systems, a return air bypass system is more effective than other two systems because it doesn't induce unconditioned outdoor air into conditioned room. The numerical study on the bypass air conditioning system shows this system can maintain indoor RH(Relative Humidity) less than a conventional CAV (Constant Air Volume) air conditioning system by adjusting face and bypass dampers at part load. A simulator was built to compare results of a numerical experiment and those of a simulator experiment. The results of the simulator experiment was nearly same as those of the numerical experiment; when a design sensible load (the ratio of sensible load to total sensible load) was 70 percent (at this time, RSHF=0.7), indoor relative humidity (in case of both numerical experiments and simulator experiments) was maintained below 60% specified by ASHRAE STANDARD 62-1999. The bypass air conditioning system is expected to be applied to many buildings where the Percentage of latent loads or air change tate is high.

Performance Characteristics of a Hybrid Air-Conditioner for Telecommunication Equipment Rooms (통신기지국용 하이브리드 냉방기의 성능특성 연구)

  • Kim, Yong-Chan;Choi, Jong-Min;Kang, Hoon;Yoon, Joon-Sang;Kim, Young-Bae;Choi, Kwang-Min;Lee, Ho-Seong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.874-880
    • /
    • 2006
  • The power density and heat dissipation rate per unit area of the telecommunication equipment have been increased with the technology development in the footprint of telecommunication hardware. A proper heat dissipation method from the PCB module is very important to allow reliable operation of its electronic component. In this study, a hybrid air-conditioner for the telecommunication equipment room was designed to save energy and obtain system reliability. For high outdoor temperatures, the hybrid system operates in the vapor compression cycle, while, for low outdoor temperatures, the hybrid system works in the secondary fluid cooling cycle with no operation of the compressor. The performance of the hybrid air-conditioner was measured by varying outdoor and indoor temperatures. The hybrid air-conditioner yielded 50% energy saving compared with the conventional refrigeration system when the mode switch temperature was $8.3^{\circ}C$.

A Study on the Operational Strategies for Outdoor Air Temperature Change Characteristics in a Radiant Floor Heating System (바닥난방시스템의 외기온도 변화특성을 고려한 운전방안에 관한 연구)

  • Ahn, Byung-Cheon;Song, Jae-Yeob
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.685-692
    • /
    • 2013
  • In this study, the control characteristics and effects of heating control methods on the heating performance and energy consumption of a hot-water heating control system of a residential apartment were researched by simulation and experiment. The purpose of this study is to evaluate operational strategies for improving an indoor thermal environment and reducing f energy consumption in the radiant floor heating system of a residential apartment.

Operation Cost Comparison of Dedicated Outdoor and Cooling + reheating Air-conditioning Systems by On-site Performance Test (현장성능시험에 의한 외기전용과 냉각식 + 재열 공조기의 운전비 비교)

  • Kim, Young-Il;Kim, Jung-Min;Chung, Kwang-Seop;Park, Seung-Tae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.37-42
    • /
    • 2011
  • Dedicated outdoor air(DOA) system which conditions the outdoor air separately is superior to conventional Cooling + reheating system with respect to energy consumption and indoor comfort. Since the sensible and latent load characteristics of indoor and outdoor are different, it is more efficient to treat them separately. In this study, cycle analysis and on-site performance test of DOA system have been conducted. The study shows that DOA requires 50% less equivalent energy than the conventional system. The on-site performance test of a prototype shows that the coefficient of performance(COP) of the DOA system is 37% higher than the conventional system.

An Evaluation on Energy Recovery Performance of the Ventilation System in Multi-Residential Building by Field Measurement (실험을 통한 공동주택 환기시스템의 실제 운전 시 전열교환성능 검토)

  • Choi, Younhee;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-73
    • /
    • 2017
  • Recently, energy recovery ventilators (ERVs) have been installed for energy saving in many multi-residential buildings in Korea. The performance of the heat exchanger of an ERV is analyzed in this study under specific indoor and outdoor conditions in a test-cell measurement. However, the performance of the heat exchanger varies according to the indoor and outdoor condition. In this study, the performance of energy recovery of the ventilation system was therefore analyzed in actual weather conditions using field measurement. Experiments were conducted under winter conditions in a multi-residential building for 20 days. Based on the measurement results, the characteristics of sensible heat and latent heat exchange rates were analyzed.

Real-Time Building Load Prediction by the On-Line Weighted Recursive Least Square Method (실시간 가중 회기최소자승법을 사용한 익일 부하예측)

  • 한도영;이재무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.609-615
    • /
    • 2000
  • The energy conservation is one of the most important issues in recent years. Especially, the energy conservation through improved control strategies is one of the most highly possible area to be implemented in the near future. The energy conservation of the ice storage system can be accomplished through the improved control strategies. A real time building load prediction algorithm was developed. The expected highest and the lowest outdoor temperature of the next day were used to estimate the next day outdoor temperature profile. The measured dry bulb temperature and the measured building load were used to estimate system parameters by using the on-line weighted recursive least square method. The estimated hourly outdoor temperatures and the estimated hourly system parameters were used to predict the next day hourly building loads. In order to see the effectiveness of the building load prediction algorithm, two different types of building models were selected and analysed. The simulation results show less than 1% in error for the prediction of the next day building loads. Therefore, this algorithm may successfully be used for the development of improved control algorithms of the ice storage system.

  • PDF