• 제목/요약/키워드: Out-plane Mode

검색결과 154건 처리시간 0.029초

압전 밴드 갭 구조물의 면내·외 방향 체적 탄성파 전파 특성 해석을 위한 유한요소 모델링 (Finite Element Modeling for the Analysis of In- and Out-of-plane Bulk Elastic Wave Propagation in Piezoelectric Band Gap Structures)

  • 김재은;김윤영
    • 대한기계학회논문집A
    • /
    • 제35권8호
    • /
    • pp.957-964
    • /
    • 2011
  • 본 연구에서는 압전 밴드 갭 구조물(포논 결정) 에 대한 체적 탄성파의 전파 특성을 주파수 및 모드 별로 파악하기 위한 유한 요소법의 적용 방안을 제안하였다. 이를 위해 체적 탄성 진행파의 면내 모드 뿐만 아니라 면외 모드를 포함하도록 3 차원 주기 경계 조건을 고려하였다. 특히, 체적 탄성파 모드 간의 비연성 특성을 전기 분극 방향에 따라 유도한 다음, 그 결과를 유한 요소 모델링에 반영하였다. 제안된 방법은 실제 시뮬레이션을 통해 다양한 형태의 압전 밴드 갭 구조물의 파동 특성 분석에 적용될 수 있는 일반적이고 효율적인 방법임을 확인하였다.

철근 콘크리트 전단벽에서 면외 하중이 면내 전단성능에 미치는 영향 (The Effect of Out-of-Plane Load on the In-Plane Shear Capacity of Reinforcement Concrete Shear Wall)

  • 신혜민;박준희
    • 한국지진공학회논문집
    • /
    • 제28권2호
    • /
    • pp.77-83
    • /
    • 2024
  • The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.

Common-Mode Current Cancellation Scheme of Half-Bridge Switch-Mode Converter for DC Motor Drive

  • Srisawang, Arnon;Panaudomsup, Sumit;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1876-1879
    • /
    • 2003
  • Due to the conventional half-bridge switch-mode converters for dc motor drive have been usually using unbalanced circuit topologies which generate common-mode currents through parasitic capacitors distributed between the ground and the dc motor frame such as the heat-sink of switching devices or the frame of the dc motor. This paper describes methods that cancel common-mode current generated in half-bridge switch-mode converters by using circuit balancing technique. The circuit balancing is to make the noise pickup or occurring in both conductor lines, signal and return pathes, is equal in amplitude and opposite in phase so that it will be canceled out in the ground plane. The common-mode current cancellation in the proposed converter is confirmed by experimental results.

  • PDF

단일 진동체의 진동 흡진기 설계 기법 (Design of a Vibration Absorber for an Elastically Suspended Rigid Body)

  • 김동욱;최용제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.190-197
    • /
    • 2002
  • A new design methodology is presented for the multi-degree-of-freedom vibration absorber for an elastically suspended rigid body with planes of symmetry in general motion. Unlike the common single degree-of-freedom vibration absorber, the presented methodology makes use of both linear and rotational properties of the absorber. It is suggested that an absorber is designed separately for the in-plane and out-of-plane vibration modes and thereby combined the two cases for a six-degree-of-freedom absorber. The nine possible design methods are suggested for the six-degree-of-freedom absorber when an elastically suspended rigid body has one, two, or three planes of symmetry.

  • PDF

단일 진동체의 진동 흡진기 설계 기법 (Design of a Vibration Absorber for an Elastically Suspended Rigid Body)

  • Kim, Dong-Wook;Park, Yong-Je
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.325.2-325
    • /
    • 2002
  • A new methodology is presented for the multi-degree-of-freedom vibration absorber for an elastically suspended rigid body with the planes of symmetry in general motion. Unlike the common single degree-of-freedom vibration absorber, the presented methodology makes use of both linear and rotational properties of the absorber. It is suggested that an absorber is designed separately for the in-plane and out-of-plane axes of vibration and combined the two cases for a six-degree-of-freedom absorber. (omitted)

  • PDF

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.

Crack constitutive model for the prediction of punching failure modes of fiber reinforced concrete laminar structures

  • Ventura-Gouveia, A.;Barros, Joaquim A.O.;Azevedo, Alvaro F.M.
    • Computers and Concrete
    • /
    • 제8권6호
    • /
    • pp.735-755
    • /
    • 2011
  • The capability of a multi-directional fixed smeared crack constitutive model to simulate the flexural/punching failure modes of fiber reinforced concrete (FRC) laminar structures is discussed. The constitutive model is implemented in a computer program based on the finite element method, where the FRC laminar structures were simulated according to the Reissner-Mindlin shell theory. The shell is discretized into layers for the simulation of the membrane, bending and out-of-plane shear nonlinear behavior. A stress-strain softening diagram is proposed to reproduce, after crack initiation, the evolution of the normal crack component. The in-plane shear crack component is obtained using the concept of shear retention factor, defined by a crack-strain dependent law. To capture the punching failure mode, a softening diagram is proposed to simulate the decrease of the out-of-plane shear stress components with the increase of the corresponding shear strain components, after crack initiation. With this relatively simple approach, accurate predictions of the behavior of FRC structures failing in bending and in shear can be obtained. To assess the predictive performance of the model, a punching experimental test of a module of a façade panel fabricated with steel fiber reinforced self-compacting concrete is numerically simulated. The influence of some parameters defining the softening diagrams is discussed.

모우드 III 하중 하에서 경사진 띠모양의 소성역을 가정한 계면균열 모델 (An Interfacial Crack Model with Inclined Strip Plastic Zones under Mode III Load)

  • 박재학;엄윤용
    • 대한기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.243-251
    • /
    • 1989
  • 본 연구에서는 균질재료에 대하여 Vitec, Riedel, Yokobori와 Kamei 등이 사용되었던 모델을 계면균열문제에 도입하였다. 즉, 균열선단에 기울어진 슬립면 (Slip plane)을 가정하고 소성역이 이 슬립면 상에 존재한다고 가정하여 이 모델에 모우드 III의 응력이 작용하는 경우에 대하여 해석하였다.소성여과 균열을 전위 (dislocation)의 연속된 분포로 나타내고 평형조건을 만족하는 전위밀도함수(disl- ocation density function)를 구하였다.이러한 모델의 해석을 통하여 각 재료에서의 의 마찰전단응력의 변화에 따른 소성역의 크기 및 균열선단에서의 상대변위의 변화를 살펴보았다. 또한 이러한 소성역을 가정한 경우의 J-적분과 균열선단에서의 상대 변위와의 관계에 대해서도 살펴보았다.

수평 배향된 네마틱 액정 모드들의 화질 특성 비교 (Comparisons of Image Quality Characteristics in Homogeneously Aligned Nematic Liquid Crystal Modes)

  • 정병선;김태현;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.100-103
    • /
    • 2005
  • Homogeneously aligned nematic liquid crystal modes are representatively the -FFS (fringe-field switching) mode using liquid crystal (-LC) with negative dielectric anisotropy, the +FFS mode and the IPS (in-plane switching) mode using +LC with positive dielectric anisotropy. In view of image quality evaluation standard of LCD, we compared characteristics of the brightness, the contrast ratio (CR) and color shift when the modes have respectively optimized phase retardation values $(d{\Delta}n)$. Consequently, in the most sensitively viewing angle of a man's physical vision, both FFS modes have advantage over the IPS mode from the brightness & the CR point of view. We are also confirmed that the +FFS mode out of them shows the smallest color shift according to all viewing directions in grey levels.

  • PDF

An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates

  • Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.181-210
    • /
    • 2009
  • This paper presents the theoretical developments of an exact finite strip for the buckling and initial post-buckling analyses of isotropic flat plates. The so-called exact finite strip is assumed to be simply supported out-of-plane at the loaded ends. The strip is developed based on the concept that it is effectively a plate. The present method, which is designated by the name Full-analytical Finite Strip Method in this paper, provides an efficient and extremely accurate buckling solution. In the development process, the Von-Karman's equilibrium equation is solved exactly to obtain the buckling loads and the corresponding form of out-of-plane buckling deflection modes. The investigation of thin flat plate buckling behavior is then extended to an initial post-buckling study with the assumption that the deflected form immediately after the buckling is the same as that obtained for the buckling. It is noted that in the present method, only one of the calculated out-of-plane buckling deflection modes, corresponding to the lowest buckling load, i.e., the first mode is used for the initial post-buckling study. Thus, the postbuckling study is effectively a single-term analysis, which is attempted by utilizing the so-called semi-energy method. In this method, the Von-Karman's compatibility equation governing the behavior of isotropic flat plates is used together with a consideration of the total strain energy of the plate. Through the solution of the compatibility equation, the in-plane displacement functions which are themselves related to the Airy stress function are developed in terms of the unknown coefficient in the assumed out-of-plane deflection function. These in-plane and out-of-plane deflected functions are then substituted in the total strain energy expressions and the theorem of minimum total potential energy is applied to solve for the unknown coefficient. The developed method is subsequently applied to analyze the initial postbuckling behavior of some representative thin flat plates for which the results are also obtained through the application of a semi-analytical finite strip method. Through the comparison of the results and the appropriate discussion, the knowledge of the level of capability of the developed method is significantly promoted.