• Title/Summary/Keyword: Out-of-school

Search Result 18,679, Processing Time 0.058 seconds

Extension Method of Association Rules Using Social Network Analysis (사회연결망 분석을 활용한 연관규칙 확장기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.111-126
    • /
    • 2017
  • Recommender systems based on association rule mining significantly contribute to seller's sales by reducing consumers' time to search for products that they want. Recommendations based on the frequency of transactions such as orders can effectively screen out the products that are statistically marketable among multiple products. A product with a high possibility of sales, however, can be omitted from the recommendation if it records insufficient number of transactions at the beginning of the sale. Products missing from the associated recommendations may lose the chance of exposure to consumers, which leads to a decline in the number of transactions. In turn, diminished transactions may create a vicious circle of lost opportunity to be recommended. Thus, initial sales are likely to remain stagnant for a certain period of time. Products that are susceptible to fashion or seasonality, such as clothing, may be greatly affected. This study was aimed at expanding association rules to include into the list of recommendations those products whose initial trading frequency of transactions is low despite the possibility of high sales. The particular purpose is to predict the strength of the direct connection of two unconnected items through the properties of the paths located between them. An association between two items revealed in transactions can be interpreted as the interaction between them, which can be expressed as a link in a social network whose nodes are items. The first step calculates the centralities of the nodes in the middle of the paths that indirectly connect the two nodes without direct connection. The next step identifies the number of the paths and the shortest among them. These extracts are used as independent variables in the regression analysis to predict future connection strength between the nodes. The strength of the connection between the two nodes of the model, which is defined by the number of nodes between the two nodes, is measured after a certain period of time. The regression analysis results confirm that the number of paths between the two products, the distance of the shortest path, and the number of neighboring items connected to the products are significantly related to their potential strength. This study used actual order transaction data collected for three months from February to April in 2016 from an online commerce company. To reduce the complexity of analytics as the scale of the network grows, the analysis was performed only on miscellaneous goods. Two consecutively purchased items were chosen from each customer's transactions to obtain a pair of antecedent and consequent, which secures a link needed for constituting a social network. The direction of the link was determined in the order in which the goods were purchased. Except for the last ten days of the data collection period, the social network of associated items was built for the extraction of independent variables. The model predicts the number of links to be connected in the next ten days from the explanatory variables. Of the 5,711 previously unconnected links, 611 were newly connected for the last ten days. Through experiments, the proposed model demonstrated excellent predictions. Of the 571 links that the proposed model predicts, 269 were confirmed to have been connected. This is 4.4 times more than the average of 61, which can be found without any prediction model. This study is expected to be useful regarding industries whose new products launch quickly with short life cycles, since their exposure time is critical. Also, it can be used to detect diseases that are rarely found in the early stages of medical treatment because of the low incidence of outbreaks. Since the complexity of the social networking analysis is sensitive to the number of nodes and links that make up the network, this study was conducted in a particular category of miscellaneous goods. Future research should consider that this condition may limit the opportunity to detect unexpected associations between products belonging to different categories of classification.

A Study on the Consideration of the Locations of Gyeongju Oksan Gugok and Landscape Interpretation - Focusing on the Arbor of Lee, Jung-Eom's "Oksan Gugok" - (경주 옥산구곡(玉山九曲)의 위치비정과 경관해석 연구 - 이정엄의 「옥산구곡가」를 중심으로 -)

  • Peng, Hong-Xu;Kang, Tai-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.26-36
    • /
    • 2018
  • This study aims to examine the characteristics of landscape through the analysis of location and the landscape of Gugok while also conducting the empirical study through the literature review, field study, and digital analysis of the Okgung Gugok. Oksan Gugok is a set of songs set in Ogsan Creek(玉山川)or Jagyese Creek(紫溪川, 紫玉山), which flows in front of the Oksan Memorial Hall(李彦迪), which is dedicated to the Lee Eong-jeok (李彦迪). We first ascertained the location and configuration of Oksan Gogok. Second, we confirmed the accurate location of Oksan Gogok by utilizing the digital topographic map of Oksan Gogok which was submitted by Google Earth Pro and Geographic Information Center as well as the length of the longitude of the gravel measured by the Trimble Juno SB GPS. Through the study of the literature and the field investigation, The results of the study are as follows. First, Yi Eonjeok was not a direct composer of Oksan Gugok, nor did he produce "Oksan Gugokha(Music)". Lee Ia-sung(李野淳), the ninth Youngest Son of Tweo-Kye, Hwang Lee, visited the "Oksan Gugokha" in the spring of 1823(Sunjo 23), which was the 270th years after the reign of Yi Eonjeok. At this time, receiving the proposal of Ian Sung, Lee Jung-eom(李鼎儼), Lee Jung-gi(李鼎基), and Lee Jung-byeong(李鼎秉), the descendants of Ian Sung set up a song and created Oksan Gugok Music. And the Essay of Oksan Travel Companions writted by Lee Jung-gi turns out being a crucial data to describe the situation when setting up the Ok-San Gugok. Second, In the majority of cases, Gogok Forest is a forest managed by a Confucian Scholar, not run by ordinary people. The creation of "Oksan Bugok Music" can be regarded as an expression of pride that the descendants of Yi Eonjeok and Lee Hwang, and next generation of several Confucian scholars had inherited traditional Neo-Confucian. Third, Lee Jung-eom's "Oksan Donghaengki" contains a detailed description of the "Oksan Gugokha" process and the process of creating a song. Fourth, We examined the location of one to nine Oksan songs again. In particular, eight songs and nine songs were located at irregular intervals, and eight songs were identified as $36^{\circ}01^{\prime}08.60^{{\prime}{\prime}}N$, $129^{\circ}09^{\prime}31.20^{{\prime}{\prime}}E$. Referring to the ancient kingdom of Taojam, the nine-stringed Sainam was unbiased as a lower rock where the two valleys of the East West congregate. The location was estimated at $36^{\circ}01^{\prime}19.79^{{\prime}{\prime}}N$, $129^{\circ}09^{\prime}30.26^{{\prime}{\prime}}E$. Fifth, The landscape elements and landscapes presented in Lee Jung-eom's "Oksan Gugokha" were divided into form, semantic and climatic elements. As a result, Lee Jung-eom's Cho Young-gwan was able to see the ideal of mountain water and the feeling of being idle in nature as well as the sense of freedom. Sixth, After examining the appearance of the elements and the frequency of the appearance of the landscape, 'water' and 'mountain' were the absolute factors that emphasized the original curved environment at the mouth of Lee Jung-eom. Therefore, there was gugokga can gauge the fresh ideas(神仙思想)and retreat ever(隱居思想). This inherent harmony between the landscape as well as through the mulah any ideas that one with nature and meditation, Confucian tube.

Media Habits of Sensation Seekers (감지추구자적매체습관(感知追求者的媒体习惯))

  • Blakeney, Alisha;Findley, Casey;Self, Donald R.;Ingram, Rhea;Garrett, Tony
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.179-187
    • /
    • 2010
  • Understanding consumers' preferences and use of media types is imperative for marketing and advertising managers, especially in today's fragmented market. A clear understanding assists managers in making more effective selections of appropriate media outlets, yet individuals' choices of type and use of media are based on a variety of characteristics. This paper examines one personality trait, sensation seeking, which has not appeared in the literature examining "new" media preferences and use. Sensation seeking is a personality trait defined as "the need for varied, novel, and complex sensations and experiences and the willingness to take physical and social risks for the sake of such experiences" (Zuckerman 1979). Six hypotheses were developed from a review of the literature. Particular attention was given to the Uses and Gratification theory (Katz 1959), which explains various reasons why people choose media types and their motivations for using the different types of media. Current theory suggests that High Sensation Seekers (HSS), due to their needs for novelty, arousal and unconventional content and imagery, would exhibit higher frequency of use of new media. Specifically, we hypothesize that HSS will use the internet more than broadcast (H1a) or print media (H1b) and more than low (LSS) (H2a) or medium sensation seekers (MSS) (H2b). In addition, HSS have been found to be more social and have higher numbers of friends therefore are expected to use social networking websites such as Facebook/MySpace (H3) and chat rooms (H4) more than LSS (a) and MSS (b). Sensation seekers can manifest into a range of behaviors including disinhibition,. It is expected that alternative social networks such as Facebook/MySpace (H5) and chat rooms (H6) will be used more often for those who have higher levels of disinhibition than low (a) or medium (b) levels. Data were collected using an online survey of participants in extreme sports. In order to reach this group, an improved version of a snowball sampling technique, chain-referral method, was used to select respondents for this study. This method was chosen as it is regarded as being effective to reach otherwise hidden population groups (Heckathorn, 1997). A final usable sample of 1108 respondents, which was mainly young (56.36% under 34), male (86.1%) and middle class (58.7% with household incomes over USD 50,000) was consistent with previous studies on sensation seeking. Sensation seeking was captured using an existing measure, the Brief Sensation Seeking Scale (Hoyle et al., 2002). Media usage was captured by measuring the self reported usage of various media types. Results did not support H1a and b. HSS did not show higher levels of usage of alternative media such as the internet showing in fact lower mean levels of usage than all the other types of media. The highest media type used by HSS was print media, suggesting that there is a revolt against the mainstream. Results support H2a and b that HSS are more frequent users of the internet than LSS or MSS. Further analysis revealed that there are significant differences in the use of print media between HSS and LSS, suggesting that HSS may seek out more specialized print publications in their respective extreme sport activity. Hypothesis 3a and b showed that HSS use Facebook/MySpace more frequently than either LSS or MSS. There were no significant differences in the use of chat rooms between LSS and HSS, so as a consequence no support for H4a, although significant for MSS H4b. Respondents with varying levels of disinhibition were expected to have different levels of use of Facebook/MySpace and chat-rooms. There was support for the higher levels of use of Facebook/MySpace for those with high levels of disinhibition than low or medium levels, supporting H5a and b. Similarly there was support for H6b, Those with high levels of disinhibition use chat-rooms significantly more than those with medium levels but not for low levels (H6a). The findings are counterintuitive and give some interesting insights for managers. First, although HSS use online media more frequently than LSS or MSS, this groups use of online media is less than either print or broadcast media. The advertising executive should not place too much emphasis on online media for this important market segment. Second, social media, such as facebook/Myspace and chatrooms should be examined by managers as potential ways to reach this group. Finally, there is some implication for public policy by the higher levels of use of social media by those who are disinhibited. These individuals are more inclined to engage in more socially risky behavior which may have some dire implications, e.g. by internet predators or future employers. There is a limitation in the study in that only those who engage in extreme sports are included. This is by nature a HSS activity. A broader population is therefore needed to test if these results hold.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

Effects of Joining Coalition Loyalty Program : How the Brand affects Brand Loyalty Based on Brand Preference (브랜드 선호에 따라 제휴 로열티 프로그램 가입이 가맹점 브랜드 충성도에 미치는 영향)

  • Rhee, Jin-Hwa
    • Journal of Distribution Research
    • /
    • v.17 no.1
    • /
    • pp.87-115
    • /
    • 2012
  • Introduction: In these days, a loyalty program is one of the most common marketing mechanisms (Lacey & Sneath, 2006; Nues & Dreze, 2006; Uncles et al., 20003). In recent years, Coalition Loyalty Program is more noticeable as one of progressed forms. In the past, loyalty program was operating independently by single product brand or single retail channel brand. Now, companies using Coalition Loyalty Program share their programs as one single service and companies to participate to this program continue to have benefits from their existing program as well as positive spillover effect from the other participating network companies. Instead of consumers to earn or spend points from single retail channel or brand, consumers will have more opportunities to utilize their points and be able to purchase other participating companies products. Issues that are related to form of loyalty programs are essentially connected with consumers' perceived view on convenience of using its program. This can be a problem for distribution companies' strategic marketing plan. Although Coalition Loyalty Program is popular corporate marketing strategy to most companies, only few researches have been published. However, compared to independent loyalty program, coalition loyalty program operated by third parties of partnership has following conditions: Companies cannot autonomously modify structures of program for individual companies' benefits, and there is no guarantee to operate and to participate its program continuously by signing a contract. Thus, it is important to conduct the study on how coalition loyalty program affects companies' success and its process as much as conducting the study on effects of independent program. This study will complement the lack of coalition loyalty program study. The purpose of this study is to find out how consumer loyalty affects affiliated brands, its cause and mechanism. The past study about loyalty program only provided the variation of performance analysis, but this study will specifically focus on causes of results. In order to do these, this study is designed and to verify three primary objects as following; First, based on opinions of Switching Barriers (Fornell, 1992; Ping, 1993; Jones, et at., 2000) about causes of loyalty of coalition brand, 'brand attractiveness' and 'brand switching cost' are antecedents and causes of change in 'brand loyalty' will be investigated. Second, influence of consumers' perception and attitude prior to joining coalition loyalty program, influence of program in retail brands, brand attractiveness and spillover effect of switching cost after joining coalition program will be verified. Finally, the study will apply 'prior brand preference' as a variable and will provide a relationship between effects of coalition loyalty program and prior preference level. Hypothesis Hypothesis 1. After joining coalition loyalty program, more preferred brand (compared to less preferred brand) will increase influence on brand attractiveness to brand loyalty. Hypothesis 2. After joining coalition loyalty program, less preferred brand (compared to more preferred brand) will increase influence on brand switching cost to brand loyalty. Hypothesis 3. (1)Brand attractiveness and (2)brand switching cost of more preferred brand (before joining the coalition loyalty program) will influence more positive effects from (1)program attractiveness and (2)program switching cost of coalition loyalty program (after joining) than less preferred brand. Hypothesis 4. After joining coalition loyalty program, (1)brand attractiveness and (2)brand switching cost of more preferred brand will receive more positive impacts from (1)program attractiveness and (2)program switching cost of coalition loyalty program than less preferred brand. Hypothesis 5. After joining coalition loyalty program, (1)brand attractiveness and (2)brand switching cost of more preferred brand will receive less impacts from (1)brand attractiveness and (2)brand switching cost of different brands (having different preference level), which joined simultaneously, than less preferred brand. Method : In order to validate hypotheses, this study will apply experimental method throughout virtual scenario of coalition loyalty program if consumers have used or available for the actual brands. The experiment is conducted twice to participants. In a first experiment, the study will provide six coalition brands which are already selected based on prior research. The survey asked each brand attractiveness, switching cost, and loyalty after they choose high preference brand and low preference brand. One hour break was provided prior to the second experiment. In a second experiment, virtual coalition loyalty program "SaveBag" was introduced to participants. Participants were informed that "SaveBag" will be new alliance with six coalition brands from the first experiment. Brand attractiveness and switching cost about coalition program were measured and brand attractiveness and switching cost of high preference brand and low preference brand were measured as same method of first experiment. Limitation and future research This study shows limitations of effects of coalition loyalty program by using virtual scenario instead of actual research. Thus, future study should compare and analyze CLP panel data to provide more in-depth information. In addition, this study only proved the effectiveness of coalition loyalty program. However, there are two types of loyalty program, which are Single and Coalition, and success of coalition loyalty program will be dependent on market brand power and prior customer attitude. Therefore, it will be interesting to compare effects of two programs in the future.

  • PDF

An Exploratory Study on the Competition Patterns Between Internet Sites in Korea (한국 인터넷사이트들의 산업별 경쟁유형에 대한 탐색적 연구)

  • Park, Yoonseo;Kim, Yongsik
    • Asia Marketing Journal
    • /
    • v.12 no.4
    • /
    • pp.79-111
    • /
    • 2011
  • Digital economy has grown rapidly so that the new business area called 'Internet business' has been dramatically extended as time goes on. However, in the case of Internet business, market shares of individual companies seem to fluctuate very extremely. Thus marketing managers who operate the Internet sites have seriously observed the competition structure of the Internet business market and carefully analyzed the competitors' behavior in order to achieve their own business goals in the market. The newly created Internet business might differ from the offline ones in management styles, because it has totally different business circumstances when compared with the existing offline businesses. Thus, there should be a lot of researches for finding the solutions about what the features of Internet business are and how the management style of those Internet business companies should be changed. Most marketing literatures related to the Internet business have focused on individual business markets. Specifically, many researchers have studied the Internet portal sites and the Internet shopping mall sites, which are the most general forms of Internet business. On the other hand, this study focuses on the entire Internet business industry to understand the competitive circumstance of online market. This approach makes it possible not only to have a broader view to comprehend overall e-business industry, but also to understand the differences in competition structures among Internet business markets. We used time-series data of Internet connection rates by consumers as the basic data to figure out the competition patterns in the Internet business markets. Specifically, the data for this research was obtained from one of Internet ranking sites, 'Fian'. The Internet business ranking data is obtained based on web surfing record of some pre-selected sample group where the possibility of double-count for page-views is controlled by method of same IP check. The ranking site offers several data which are very useful for comparison and analysis of competitive sites. The Fian site divides the Internet business areas into 34 area and offers market shares of big 5 sites which are on high rank in each category daily. We collected the daily market share data about Internet sites on each area from April 22, 2008 to August 5, 2008, where some errors of data was found and 30 business area data were finally used for our research after the data purification. This study performed several empirical analyses in focusing on market shares of each site to understand the competition among sites in Internet business of Korea. We tried to perform more statistically precise analysis for looking into business fields with similar competitive structures by applying the cluster analysis to the data. The research results are as follows. First, the leading sites in each area were classified into three groups based on averages and standard deviations of daily market shares. The first group includes the sites with the lowest market shares, which give more increased convenience to consumers by offering the Internet sites as complimentary services for existing offline services. The second group includes sites with medium level of market shares, where the site users are limited to specific small group. The third group includes sites with the highest market shares, which usually require online registration in advance and have difficulty in switching to another site. Second, we analyzed the second place sites in each business area because it may help us understand the competitive power of the strongest competitor against the leading site. The second place sites in each business area were classified into four groups based on averages and standard deviations of daily market shares. The four groups are the sites showing consistent inferiority compared to the leading sites, the sites with relatively high volatility and medium level of shares, the sites with relatively low volatility and medium level of shares, the sites with relatively low volatility and high level of shares whose gaps are not big compared to the leading sites. Except 'web agency' area, these second place sites show relatively stable shares below 0.1 point of standard deviation. Third, we also classified the types of relative strength between leading sites and the second place sites by applying the cluster analysis to the gap values of market shares between two sites. They were also classified into four groups, the sites with the relatively lowest gaps even though the values of standard deviation are various, the sites with under the average level of gaps, the sites with over the average level of gaps, the sites with the relatively higher gaps and lower volatility. Then we also found that while the areas with relatively bigger gap values usually have smaller standard deviation values, the areas with very small differences between the first and the second sites have a wider range of standard deviation values. The practical and theoretical implications of this study are as follows. First, the result of this study might provide the current market participants with the useful information to understand the competitive circumstance of the market and build the effective new business strategy for the market success. Also it might be useful to help new potential companies find a new business area and set up successful competitive strategies. Second, it might help Internet marketing researchers take a macro view of the overall Internet market so that make possible to begin the new studies on overall Internet market beyond individual Internet market studies.

  • PDF

An Empirical Study on Motivation Factors and Reward Structure for User's Createve Contents Generation: Focusing on the Mediating Effect of Commitment (창의적인 UCC 제작에 영향을 미치는 동기 및 보상 체계에 대한 연구: 몰입에 매개 효과를 중심으로)

  • Kim, Jin-Woo;Yang, Seung-Hwa;Lim, Seong-Taek;Lee, In-Seong
    • Asia pacific journal of information systems
    • /
    • v.20 no.1
    • /
    • pp.141-170
    • /
    • 2010
  • User created content (UCC) is created and shared by common users on line. From the user's perspective, the increase of UCCs has led to an expansion of alternative means of communications, while from the business perspective UCCs have formed an environment in which an abundant amount of new contents can be produced. Despite outward quantitative growth, however, many aspects of UCCs do not meet the expectations of general users in terms of quality, and this can be observed through pirated contents and user-copied contents. The purpose of this research is to investigate effective methods for fostering production of creative user-generated content. This study proposes two core elements, namely, reward and motivation, which are believed to enhance content creativity as well as the mediating factor and users' committement, which will be effective for bridging the increasing motivation and content creativity. Based on this perspective, this research takes an in-depth look at issues related to constructing the dimensions of reward and motivation in UCC services for creative content product, which are identified in three phases. First, three dimensions of rewards have been proposed: task dimension, social dimension, and organizational dimention. The task dimension rewards are related to the inherent characteristics of a task such as writing blog articles and pasting photos. Four concrete ways of providing task-related rewards in UCC environments are suggested in this study, which include skill variety, task significance, task identity, and autonomy. The social dimensioni rewards are related to the connected relationships among users. The organizational dimension consists of monetary payoff and recognition from others. Second, the two types of motivations are suggested to be affected by the diverse rewards schemes: intrinsic motivation and extrinsic motivation. Intrinsic motivation occurs when people create new UCC contents for its' own sake, whereas extrinsic motivation occurs when people create new contents for other purposes such as fame and money. Third, commitments are suggested to work as important mediating variables between motivation and content creativity. We believe commitments are especially important in online environments because they have been found to exert stronger impacts on the Internet users than other relevant factors do. Two types of commitments are suggested in this study: emotional commitment and continuity commitment. Finally, content creativity is proposed as the final dependent variable in this study. We provide a systematic method to measure the creativity of UCC content based on the prior studies in creativity measurement. The method includes expert evaluation of blog pages posted by the Internet users. In order to test the theoretical model of our study, 133 active blog users were recruited to participate in a group discussion as well as a survey. They were asked to fill out a questionnaire on their commitment, motivation and rewards of creating UCC contents. At the same time, their creativity was measured by independent experts using Torrance Tests of Creative Thinking. Finally, two independent users visited the study participants' blog pages and evaluated their content creativity using the Creative Products Semantic Scale. All the data were compiled and analyzed through structural equation modeling. We first conducted a confirmatory factor analysis to validate the measurement model of our research. It was found that measures used in our study satisfied the requirement of reliability, convergent validity as well as discriminant validity. Given the fact that our measurement model is valid and reliable, we proceeded to conduct a structural model analysis. The results indicated that all the variables in our model had higher than necessary explanatory powers in terms of R-square values. The study results identified several important reward shemes. First of all, skill variety, task importance, task identity, and automony were all found to have significant influences on the intrinsic motivation of creating UCC contents. Also, the relationship with other users was found to have strong influences upon both intrinsic and extrinsic motivation. Finally, the opportunity to get recognition for their UCC work was found to have a significant impact on the extrinsic motivation of UCC users. However, different from our expectation, monetary compensation was found not to have a significant impact on the extrinsic motivation. It was also found that commitment was an important mediating factor in UCC environment between motivation and content creativity. A more fully mediating model was found to have the highest explanation power compared to no-mediation or partially mediated models. This paper ends with implications of the study results. First, from the theoretical perspective this study proposes and empirically validates the commitment as an important mediating factor between motivation and content creativity. This result reflects the characteristics of online environment in which the UCC creation activities occur voluntarily. Second, from the practical perspective this study proposes several concrete reward factors that are germane to the UCC environment, and their effectiveness to the content creativity is estimated. In addition to the quantitive results of relative importance of the reward factrs, this study also proposes concrete ways to provide the rewards in the UCC environment based on the FGI data that are collected after our participants finish asnwering survey questions. Finally, from the methodological perspective, this study suggests and implements a way to measure the UCC content creativity independently from the content generators' creativity, which can be used later by future research on UCC creativity. In sum, this study proposes and validates important reward features and their relations to the motivation, commitment, and the content creativity in UCC environment, which is believed to be one of the most important factors for the success of UCC and Web 2.0. As such, this study can provide significant theoretical as well as practical bases for fostering creativity in UCC contents.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Change of Green Space Arrangement and Planting Structure of Apartment Complexes in Seoul (서울시 아파트단지의 녹지배치 및 식재구조 변화 연구)

  • Lee, Dong-Wook;Lee, Kyong-Jae;Han, Bong-Ho;Jang, Jae-Hoon;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.1-17
    • /
    • 2012
  • This study was carried out to propose the improved method by analyzing the change of green space arrangement and planting structure of apartment complexes in Seoul. 12 survey sites, which have obvious differences, were selected by reflecting the change of floor area ratio, underground parking place, and green space ratio. We divided the survey sites into four types that high green ratio(over 40%) apartment on natural ground, low green ratio(under 40%) apartment on natural ground, low green ratio(under 40%) apartment on artificial ground, and high green ratio(over 40%) apartment on artificial ground each period based on green space ratio and ground structure, plant crown volume, planting density, and planting pattern. The main factors of change of green space arrangement were green space ratio and ground structure. The Green space ratio was changed by the floor area ratio with constructing underground parking place and floor area ratio was adjusted by government policy and economic status. Average width of front green area has been changed from 10.0m in high green ratio apartment on natural ground for 3.5m, 2.7m, and 4.5m each period. The average width of the buffer green area has been changed from 15.0m in high green ratio apartment on natural ground of 7.7m, and 2.7m by extending parking place in the low green ratio apartment of artificial ground, so buffer green areas have been reduced and disconnected. So buffer green area in apartment complexes has been extended that the average width of the buffer green area was 3.8m caused by growing recognition of green since 2001. The ratio of native plant in canopy layer was increased from 45.1 % in the case of the high green ratio apartment of natural ground in 1980~1983 to 55.6%. Average plant crown volume increased from $1.27m^3/m^2$ in high green ratio apartment on natural ground for $3.47m^3/m^2$ in a low green ratio apartment on natural ground. But average plant crown volume is $0.27m^3/m^2$ in the high green ratio apartment of the artificial ground plant density of canopy layer was changed from 5 individuals per $100m^2$ to 14.5 individuals per $100m^2$. We should construct the buffer green area with natural ground and get the function of ecological and beautiful environment regarding to garden concept in case of front green area, width 4.5m. We should get the function of increasing green volume by multi-layer planting with shade woody species and flower woody species in case of back-side green area, width over 5.0m. We should get the function of covering the wall and increasing green landscape by planting with high woody species in case of side green area. We should apply the ecological planting technique to buffer green area and connect buffer green area to inner green area in apartment complexes.